OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19156–19168

Optical reconfigurable demultiplexer based on Bragg grating assisted ring resonators

Salvador Vargas and Carmen Vazquez  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 19156-19168 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2451 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A polarization independent reconfigurable optical demultiplexer with low crosstalk between adjacent channels and high number of potential allocated channels is designed on silicon on insulator technology. On to off state transitions can be implemented by changing the coupling factor or the ring length. Wavelength selective switch units are cascaded to form the demultiplexer. Crosstalks below −30dB with 50GHz channel spacing and losses below 1.5dB in the off state are obtained from simulations. Designs using carrier dispersion effect and power consumption estimations are included.

© 2014 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(230.2090) Optical devices : Electro-optical devices
(230.3120) Optical devices : Integrated optics devices
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

Original Manuscript: June 25, 2014
Revised Manuscript: July 18, 2014
Manuscript Accepted: July 19, 2014
Published: July 31, 2014

Salvador Vargas and Carmen Vazquez, "Optical reconfigurable demultiplexer based on Bragg grating assisted ring resonators," Opt. Express 22, 19156-19168 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Zang, J. P. Jue, and B. Mukherjeea, “Review of Routing and Wavelength Assignment Approaches for Wavelength-Routed Optical WDM Networks,” Opt. Netw. Mag. 1, 47–60 (2000).
  2. T. E1-Bawab, Optical Switching (Springer, 2010).
  3. I. Kiyat, A. Aydinli, and N. Dagli, “Low-Power Thermooptical Tuning of SOI Resonator Switch,” IEEE Photon. Technol. Lett. 18(2), 364–366 (2006). [CrossRef]
  4. E. J. Klein, P. Urban, G. Sengo, L. T. H. Hilderink, M. Hoekman, R. Pellens, P. van Dijk, and A. Driessen, “Densely integrated microring resonator based photonic devices for use in Access networks,” Opt. Express 15(16), 10346–10355 (2007). [CrossRef] [PubMed]
  5. S. J. Emelett and R. A. Soref, “Analysis of dual-microring-resonator cross-connect switches and modulators,” Opt. Express 13(20), 7840–7853 (2005). [CrossRef] [PubMed]
  6. R. Boeck, N. A. F. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18(24), 25151–25157 (2010). [CrossRef] [PubMed]
  7. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007). [CrossRef] [PubMed]
  8. Y. Zhang, P. Chowdhury, M. Tornatore, and B. Mukherjee, “Energy Efficiency in Telecom Optical Networks,” IEEE Commun. Surveys Tuts. 12(4), 441–458 (2010). [CrossRef]
  9. L. Shuai, W. Yuanda, Y. Xiaojie, A. Junming, L. Jianguang, W. Hongjie, and H. Xiongwei, “Tunable filters based on an SOI nano-wire waveguide micro ring resonator,” J. Semiconduc. 32, 084007 (2011).
  10. R. Soref and B. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  11. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  12. C. Li, L. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express 15(8), 5069–5076 (2007). [CrossRef] [PubMed]
  13. P. Dong, W. Qian, H. Liang, R. Shafiiha, X. Wang, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “1x4 reconfigurable demultiplexing filter based on free-standing silicon racetrack resonators,” Opt. Express 18(24), 24504–24509 (2010). [CrossRef] [PubMed]
  14. S. Vargas and C. Vazquez, “Synthesis of optical filters using microring resonators with ultra-large FSR,” Opt. Express 18(25), 25936–25949 (2010). [CrossRef] [PubMed]
  15. C. Vázquez, S. Vargas, and P. Contreras, “Low power consumption in silicon photonics tuning filters based on compound ring resonators,” in Silicon Photonics VIII, Photonics West, Proc. SPIE 8629, 44–50 (2013). [CrossRef]
  16. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl. 1(3), 1–14 (2012). [CrossRef]
  17. S. Ghosh, S. Keyvaninia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Adhesively bonded Ce:YIG/SOI integrated optical circulator,” Opt. Lett. 38(6), 965–967 (2013). [CrossRef] [PubMed]
  18. C. Vázquez, S. Vargas, J. M. S. Pena, and P. Corredera, “Tunable Optical Filters Using Compound Ring Resonators for DWDM,” IEEE Photon. Technol. Lett. 15(8), 1085–1087 (2003). [CrossRef]
  19. J. G. Proakis and D. G. Manolakis, Digital Signal Processing, (Pearson Prentice Hall, 2006).
  20. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004). [CrossRef] [PubMed]
  21. S. P. Chang, C. E. Png, S. T. Lim, V. M. N. Passaro, and G. T. Reed, “Single mode and polarization independent SOI waveguides with small cross section,” J. Lightwave Technol. 23, 1573–1582 (2005).
  22. W. Headley, G. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5526 (2004). [CrossRef]
  23. F. Sun, J. Yu, and S. Chen, “Directional-coupler-based Mach-Zehnder interferometer in silicon-on-insulator technology for optical intensity modulation,” Opt. Eng. 42, 25601–25605 (2007).
  24. P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Submilliwatt, ultrafast and broadband electro-optic silicon switches,” Opt. Express 18(24), 25225–25231 (2010). [CrossRef] [PubMed]
  25. J. Dziewior and W. Schmid, “Auger coefficients for highly doped and highly excited silicon,” Appl. Phys. Lett. 31(5), 346–348 (1977). [CrossRef]
  26. M. Hossein-Zadeh and K. J. Vahala, “Optomechanical Oscillator on a Silicon Chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 276–287 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited