OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19183–19197

Stability in computed optical interferometric tomography (Part I): Stability requirements

Nathan D. Shemonski, Steven G. Adie, Yuan-Zhi Liu, Fredrick A. South, P. Scott Carney, and Stephen A. Boppart  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 19183-19197 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1625 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



As imaging systems become more advanced and acquire data at faster rates, increasingly dynamic samples can be imaged without concern of motion artifacts. For optical interferometric techniques such as optical coherence tomography, it often follows that initially, only amplitude-based data are utilized due to unstable or unreliable phase measurements. As systems progress, stable phase maps can also be acquired, enabling more advanced, phase-dependent post-processing techniques. Here we report an investigation of the stability requirements for a class of phase-dependent post-processing techniques – numerical defocus and aberration correction with further extensions to techniques such as Doppler, phase-variance, and optical coherence elastography. Mathematical analyses and numerical simulations over a variety of instabilities are supported by experimental investigations.

© 2014 Optical Society of America

OCIS Codes
(100.5090) Image processing : Phase-only filters
(110.4280) Imaging systems : Noise in imaging systems
(110.4500) Imaging systems : Optical coherence tomography
(110.3175) Imaging systems : Interferometric imaging
(110.3010) Imaging systems : Image reconstruction techniques
(110.3200) Imaging systems : Inverse scattering

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: June 2, 2014
Revised Manuscript: July 21, 2014
Manuscript Accepted: July 21, 2014
Published: July 31, 2014

Virtual Issues
Vol. 9, Iss. 10 Virtual Journal for Biomedical Optics

Nathan D. Shemonski, Steven G. Adie, Yuan-Zhi Liu, Fredrick A. South, P. Scott Carney, and Stephen A. Boppart, "Stability in computed optical interferometric tomography (Part I): Stability requirements," Opt. Express 22, 19183-19197 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Radon, “On the determination of functions from their integral values along certain manifolds,” IEEE Trans. Med. Imaging 5(4), 170–176 (1986). [CrossRef] [PubMed]
  2. G. N. Hounsfield, “Computerized transverse axial scanning (tomography): Part I. Description of system,” Br. J. Radiol. 46(552), 1016–1022 (1973).
  3. L. J. Cutrona, W. E. Vivian, E. N. Leith, and G. O. Hall, “A high-resolution radar combat-surveillance system,” IRE Trans. Mil. Electron. MIL-5(2), 127–131 (1961). [CrossRef]
  4. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967). [CrossRef]
  5. E. Cuche, P. Poscio, and C. D. Depeursinge, “Optical tomography at the microscopic scale by means of a numerical low-coherence holographic technique,” Proc. SPIE 2927, 61–66 (1996). [CrossRef]
  6. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  7. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23(12), 3177–3190 (2006). [CrossRef] [PubMed]
  8. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007). [CrossRef]
  9. T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012). [CrossRef] [PubMed]
  10. B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Non-paraxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 24(9), 2527–2542 (2007). [CrossRef]
  11. V. Nourrit, B. Vohnsen, and P. Artal, “Blind deconvolution for high-resolution confocal scanning laser ophthalmoscopy,” J. Opt. A, Pure Appl. Opt. 7(10), 585–592 (2005). [CrossRef]
  12. E. Y. Lam and J. W. Goodman, “Iterative statistical approach to blind image deconvolution,” J. Opt. Soc. Am. A 17(7), 1177–1184 (2000). [CrossRef] [PubMed]
  13. J. M. Schmitt, “Restoration of optical coherence images of living Tissue using the CLEAN algorithm,” J. Biomed. Opt. 3(1), 66–75 (1998). [CrossRef] [PubMed]
  14. A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013). [CrossRef] [PubMed]
  15. S. Buckreuss, “Motion errors in an airborne synthetic aperture radar system,” Eur. Trans. Telecommun. 2(6), 655–664 (1991). [CrossRef]
  16. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12(13), 2977–2998 (2004). [CrossRef] [PubMed]
  17. D. Hillmann, G. Franke, C. Lührs, P. Koch, and G. Hüttmann, “Efficient holoscopy image reconstruction,” Opt. Express 20(19), 21247–21263 (2012). [CrossRef] [PubMed]
  18. A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013). [CrossRef] [PubMed]
  19. N. D. Shemonski, A. Ahmad, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part II): In vivo stability assessment,” Opt. Express 22(16), 19314–19326 (2014). [CrossRef]
  20. B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: computed imaging for scanned coherent microscopy,” Sensors (Basel) 8(6), 3903–3931 (2008). [CrossRef] [PubMed]
  21. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30(16), 2131–2133 (2005). [CrossRef] [PubMed]
  22. R. John, R. Rezaeipoor, S. G. Adie, E. J. Chaney, A. L. Oldenburg, M. Marjanovic, J. P. Haldar, B. P. Sutton, and S. A. Boppart, “In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes,” Proc. Natl. Acad. Sci. U.S.A. 107(18), 8085–8090 (2010). [CrossRef] [PubMed]
  23. R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 56005–56009 (2010). [CrossRef] [PubMed]
  24. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999). [CrossRef] [PubMed]
  25. S. G. Adie, N. D. Shemonski, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy and computational adaptive optics,” in Optical Coherence Tomography: Technology and Applications, 2nd Ed., W. Drexler and J. G. Fujimoto, eds., (in press).
  26. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Phase stability technique for inverse scattering in optical coherence tomography,” in Proceedings of 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro (2006), pp. 578–581. [CrossRef]
  27. M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt. 11(2), 024014 (2006). [CrossRef] [PubMed]
  28. B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009). [CrossRef] [PubMed]
  29. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003). [CrossRef] [PubMed]
  30. S. Yazdanfar, C. Yang, M. Sarunic, and J. Izatt, “Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound,” Opt. Express 13(2), 410–416 (2005). [CrossRef] [PubMed]
  31. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005). [CrossRef] [PubMed]
  32. E. Hecht, Optics, 4th ed. (Addison Wesley, 2002), Chap. 11.
  33. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995). [CrossRef]
  34. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  35. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005). [CrossRef] [PubMed]
  36. B. Braaf, K. A. Vermeer, V. A. D. P. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express 19(21), 20886–20903 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited