OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19219–19234

Tunneling dynamics and band structures of three weakly coupled Bose-Einstein condensates

Qiuyi Guo, XuZong Chen, and Biao Wu  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 19219-19234 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3097 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the tunneling dynamics and energy bands of three Bose-Einstein condensates which are coupled weakly with each other. The study is carried out with both the mean-filed model and the second-quantized model. The results from these two models are compared and found to agree with each other when the particle number is large. Without interaction, this system possesses a Dirac point in its energy band. This Dirac point is immediately destroyed and develops into a loop structure with arbitrary small interaction. This loop structure has a strong effect on the tunneling dynamics. We find that the tunneling dynamics in this system is very sensitive to the system parameter, e.g., the interaction strength. This sensitivity is found to be caused by the chaos in the mean-field model and the avoided energy crossings with tiny gaps in the second-quantized model. This result gives a certain indication on how the classical dynamics and quantum dynamics are connected in the semi-classical limit. Our mean-field results are also valid for three mutually coupled optical nonlinear waveguides.

© 2014 Optical Society of America

OCIS Codes
(140.1540) Lasers and laser optics : Chaos
(020.1475) Atomic and molecular physics : Bose-Einstein condensates

ToC Category:
Atomic and Molecular Physics

Original Manuscript: May 8, 2014
Revised Manuscript: July 16, 2014
Manuscript Accepted: July 17, 2014
Published: July 31, 2014

Qiuyi Guo, XuZong Chen, and Biao Wu, "Tunneling dynamics and band structures of three weakly coupled Bose-Einstein condensates," Opt. Express 22, 19219-19234 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995). [CrossRef] [PubMed]
  2. C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, “Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions,” Phys. Rev. Lett. 75, 1687–1690 (1995). [CrossRef] [PubMed]
  3. I. Bloch, “Ultracold quantum gases in optical lattices,” Nature Phys. 1, 23–30 (2005). [CrossRef]
  4. M. Greiner, O. Mandel, T. Esslinger, T W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature(London) 415, 39–44 (2002). [CrossRef]
  5. J. v. Porto, “Optical lattices: More than a look,” Nature Phys. 7, 280–281 (2011). [CrossRef]
  6. D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Cold Bosonic Atoms in Optical Lattices, ” Phys. Rev. Lett. 81, 3108–3111 (1998). [CrossRef]
  7. L.M. Duan, E. Demler, and M. D. Lukin, “Controlling spin exchange interactions of ultracold atoms in optical lattices,” Phys. Rev. Lett. 91, 090402 (2003). [CrossRef] [PubMed]
  8. Y. Shin, M. Saba, A. Schirotzek, T. A. Pasquini, A. E. Leanhardt, D. E. Pritchard, and W. Ketterle, “Distillation of Bose-Einstein condensates in a double-well potential,” Phys. Rev. L 92, 150401 (2004). [CrossRef]
  9. M. J. Steel and M. J. Collett, “Quantum state of two trapped Bose-Einstein condensates with a Josephson coupling,” Phys. Rev. A. 57, 2920–2930 (1998). [CrossRef]
  10. M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, “Direct observation of tunneling and nonlinear self-trapping in a single Bosonic Josephson junction,” Phys. Rev. Lett. 95, 010402 (2005). [CrossRef] [PubMed]
  11. Y. A. Chen, S. D. Huber, S. Trotzky, I. Bloch, and E. Altman, “Many-body LandauZener dynamics in coupled one-dimensional Bose liquid,” Nature Phys. 7, 61–67 (2011). [CrossRef]
  12. B. Wu and Q. Niu, “Nonlinear Landau-Zener tunneling,” Phys. Rev. A. 61, 023402 (2000). [CrossRef]
  13. J. Liu, B. Wu, and Q. Niu, “Nonlinear evolution of quantum states in the Adiabatic regime,” Phys. Rev. Lett. 90, 170404 (2003). [CrossRef] [PubMed]
  14. B. Wu and Q. Niu, “Superfluidity of BoseEinstein condensate in an optical lattice: LandauZener tunnelling and dynamical instability,” New J. Phys. 5, 1041–10424 (2003). [CrossRef]
  15. C. Kasztelan, S. Trotzky, Y.A. Chen, I. Bloch, I. P. McCulloch, U. Schollwock, and G. Orso, “Landau-Zener Sweeps and Sudden Quenches in Coupled Bose-Hubbard Chains,” Phys. Rev. Lett. 106, 155302 (2011). [CrossRef] [PubMed]
  16. G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, “Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential,” Phys. Rev. A 554318–4324 (1997). [CrossRef]
  17. L. Pitaevskii and S. Stringari, “Thermal vs quantum decoherence in double well trapped Bose-Einstein condensates,” Phys. Rev. L 87180402 (2001). [CrossRef]
  18. Y. Shin, M. Saba, T. A. Pasquini, W. Ketterle, D. E. Pritchard, and A. E. Leanhardt, “Atom interferometry with Bose-Einstein condensates in a double-well potential,” Phys. Rev. L 92, 050405 (2004). [CrossRef]
  19. K. Maussang, G. E. Marti, T. Schneider, P. Treutlein, Y. Li, A. Sinatra, and R. Long, “Enhanced and Reduced Atom Number Fluctuations in a BEC Splitter,” J. Estéve and J. Reichel, Phys. Rev. Lett. 105, 080403 (2010). [CrossRef]
  20. A. Sinatra, Y. Castin, and Y. Li, “Particle number fluctuations in a cloven trapped Bose gas at finite temperature,” Phys. Rev. A 81, 053623 (2010). [CrossRef]
  21. B. Wu and J. Liu, “Commutability between the Semiclassical and Adiabatic Limits,” Phys. Rev. L 96, 020405 (2006). [CrossRef]
  22. X. B. Luo, Q. T. Xie, and B. Wu, “Nonlinear coherent destruction of tunneling,” Phys. Rev. A 76, 051802 (2007). [CrossRef]
  23. H. Pu, W. P. Zhang, and P. Meystre, “Macroscopic Spin Tunneling and Quantum Critical Behavior of a Condensate in a Double-Well Potential,” Phys. Rev. L 89090401 (2002). [CrossRef]
  24. A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, “Quantum Coherent Atomic Tunneling between Two Trapped Bose-Einstein Condensates,” Phys. Rev. Lett. 79, 4950–4953 (1997). [CrossRef]
  25. B. P. Anderson, P. C. Haljan, C. A. Regal, D. L. Feder, L. A. Collins, C. W. Clark, and E. A. Cornell, “Watching Dark Solitons Decay into Vortex Rings in a Bose-Einstein Condensate,” Phys. Rev. Lett. 86, 2926–2929 (2001). [CrossRef] [PubMed]
  26. S. Aubry, S. Flach, K. Kladko, and E. Olbrich, “Manifestation of classical Bifurcation in the spectrum of the integrable quantum dimer,” Phys. Rev. Lett. 76, 1607–1610 (1996). [CrossRef] [PubMed]
  27. Q. Thommen, J. C. Garreau, and V. Zehnle, “Classical chaos with Bose-Einstein condensates in tilted optical lattices,” Phys. Rev. Lett. 91, 210405 (2003). [CrossRef] [PubMed]
  28. J. A. Stickney, D. Z. Anderson, and A. A. Zozulya, “Transistorlike behavior of a Bose-Einstein condensate in a triple-well potential,” Phy. Rev. A. 75, 013608 (2007). [CrossRef]
  29. R. Franzosi, V. Penna, and R. Zecchina, “Quantum dynamics of coupled bosonic wells within the Bose-Hubbard picture,” Mod. Phys. B 14, 943–961 (2000). [CrossRef]
  30. L. Amico and V. Penna, “Dynamical Mean Field Theory of the Bose-Hubbard Model,” Phys. Rev. Lett. 80, 2189–2192 (1998). [CrossRef]
  31. R. Paredes, “Tunneling of ultracold Bose gases in multiple wells,” Phys. Rev. A 73, 033616 (2006). [CrossRef]
  32. S. Mossmann and C. Jung, “Semiclassical approach to Bose-Einstein condensates in a triple well potential,” Phys. Rev. A 74, 033601 (2006). [CrossRef]
  33. J. A. Stickney, D. Z. Anderson, and A. A. Zozulya, “Transistorlike behavior of a Bose-Einstein condensate in a triple-well potential,” Phys. Rev. A 75, 013608 (2007). [CrossRef]
  34. F. Trimborn, D. Witthaut, and H. J. Korsch, “Beyond mean-field dynamics of small Bose-Hubbard systems based on the number-conserving phase-space approach,” Phys. Rev. A 79, 013608 (2009). [CrossRef]
  35. P. Buonsante, R. Franzosi, and V. Penna, “Persistence of mean-field features in the energy spectrum of small arrays of BoseEinstein condensates,” J. Phys. B. 37, 229–238 (2004). [CrossRef]
  36. L. Cao, I. Brouzos, S. Zllner, and P. Schmelcher, “Interaction-driven interband tunneling of bosons in the triple well,” New J. Phys. 13, 033032 (2011). [CrossRef]
  37. E. M. Graefe, H. J. Korsch, and D. Witthaut, “Mean-field dynamics of a Bose-Einstein condensate in a time-dependent triple-well trap: Nonlinear eigenstates, Landau-Zener models, and stimulated Raman adiabatic passage,” Phys. Rev. A 73, 013617 (2006). [CrossRef]
  38. Xin Jiang, Li-Bin Fu, Wen-shan Duan, and Jie Liu, “Phase transition of the ground state for two-component BoseEinstein condensates in a triple-well trap,” Journal of Phys. B,  44, 115301 (2011). [CrossRef]
  39. B. Liu, L. B. Fu, S. P. Yang, and J. Liu, “Josephson oscillation and transition to self-trapping for Bose-Einstein condensates in a triple-well trap,” Phys. Rev. A. 75, 033601 (2007). [CrossRef]
  40. C. J. Bradly, M. Rab, A. D. Greentree, and A. M. Martin, “Coherent tunneling via adiabatic passage in a three-well Bose-Hubbard system,” Phys. Rev. A. 85, 053609 (2012). [CrossRef]
  41. P. Jason, M. Johansson, and K. Kirr, “Quantum signatures of an oscillatory instability in the Bose-Hubbard trimer,” Phys. Rev. E 86, 016214 (2012). [CrossRef]
  42. P. Buonsante, R. Franzosi, and V. Penna, “Dynamical Instability in a Trimeric Chain of Interacting Bose-Einstein Condensates,” Phy. Rev. Lett. 90, 050404 (2003). [CrossRef]
  43. P. Buonsante, R. Franzosi, and V. Penna, “Control of unstable macroscopic oscillations in the dynamics of three coupled Bose condensates,” J. Phys. A. 42, 285307 (2009). [CrossRef]
  44. V. Penna, “Dynamics of the central-depleted-well regime in the open Bose-Hubbard trimer,” Phys. Rev. E 87, 052909 (2013). [CrossRef]
  45. T. F. Viscondi and K. Furuya, “Dynamics of a BoseEinstein condensate in a symmetric triple-well trap,” J. Phys. A. 44, 175301 (2011). [CrossRef]
  46. H. Hennig, J. Dorignac, and D. K. Campbell, “Transfer of Bose-Einstein condensates through discrete breathers in an optical lattice,” Phys. Rev. A. 82, 053604 (2010). [CrossRef]
  47. K. Nemoto, C. A. Holmes, G. J. Milburn, and W. J. Munro, “Quantum dynamics of three coupled atomic Bose-Einstein condensates,” Phys. Rev. A. 63, 013604 (2000). [CrossRef]
  48. C.L Pando L. and E. J. Doedel, “1/f noise in a thin stochastic layer described by the discrete nonlinear Schrdinger equation,” Phys. Rev. E 75, 016213 (2007). [CrossRef]
  49. A. R. Kolovsky, “Semiclassical Quantization of the Bogoliubov Spectrum,” Phys. Rev. Lett. 99, 020401 (2007). [CrossRef] [PubMed]
  50. R. Franzosi and V. Penna, “Chaotic behavior, collective modes, and self-trapping in the dynamics of three coupled Bose-Einstein condensates,” Phys. Rev. E. 67, 046227 (2003). [CrossRef]
  51. M. Hiller, T. Kottos, and T. Geisel, “Complexity in parametric Bose-Hubbard Hamiltonians and structural analysis of eigenstates,” Phys. Rev. A 73, 061604(R) (2006). [CrossRef]
  52. R. Franzosi and V. Penna, “Self-trapping mechanisms in the dynamics of three coupled Bose-Einstein condensates,” Phys. Rev. A. 65, 013601 (2001). [CrossRef]
  53. M. Hiller, T. Kottos, and T. Geisel, “Wave-packet dynamics in energy space of a chaotic trimeric Bose-Hubbard system,” Phys. Rev. A 79, 023621 (2009). [CrossRef]
  54. M. Johansson, “Hamiltonian Hopf bifurcations in the discrete nonlinear Schrdinger trimer: oscillatory instabilities, quasi-periodic solutions and a ’new’ type of self-trapping transition,” J. Phys. A: Math. Gen. 37, 2201–2222 (2004). [CrossRef]
  55. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009). [CrossRef]
  56. Z. Chen and B. Wu, “Bose-Einstein condensate in a honeycomb optical lattice: fingerprint of superfluidity at the dirac point,” Phys. Rev. Lett. 107, 065301 (2011). [CrossRef] [PubMed]
  57. A. J. Lichtenberg and M. A. Lieberman, Regular and stochastic Motion (ASpringer-Verlag, New York) p. 1983B.
  58. B. Wu and J. Liu, “Commutability between the Semiclassical and Adiabatic Limits,” Phys. Rev. Lett. 96, 020405 (2006). [CrossRef] [PubMed]
  59. A. Szameit, Y. V. Kartashov, M. Heinrich, F. Dreisow, R. Keil, S. Nolte, A. Tünnermann, V. A. Vysloukh, F. Lederer, and L. Torner, “Nonlinearity-induced broadening of resonances in dynamically modulated couplers,” Opt. Lett. 34, 2700–2702 (2009). [CrossRef] [PubMed]
  60. K. Henderson, C. Ryu, C. MacCormick, and M. G. Boshier, “Experimental demonstration of painting arbitrary and dynamic potentials for BoseEinstein condensates,” New J. Phys. 11, 043030 (2009). [CrossRef]
  61. J. Koch and K. L. Hur, “Discontinuous current-phase relations in small one-dimensional Josephson junction arrays,” Phy. Rev. L 101, 097007 (2008) [CrossRef]
  62. X. B. Luo, L. P. Li, L. You, and B. Wu, “Coherent destruction of tunneling and dark Floquet state,” New J. Phys. 16, 013007 (2014) [CrossRef]
  63. L. Dell Anna, G. Mazzarella, V. Penna, and L. Salasnich, “Entanglement entropy and macroscopic quantum states with dipolar bosons in a triple-well potential,” Phys. Rev. A 87, 053620 (2013). [CrossRef]
  64. T. Lahaye, T. Pfau, and L. Santos, “Mesoscopic ensembles of polar Bosons in triple-well potentials,” Phys. Rev. Lett. 104, 170404 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited