OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19235–19241

Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 4.25 THz

M. Bauer, R. Venckevičius, I. Kašalynas, S. Boppel, M. Mundt, L. Minkevičius, A. Lisauskas, G. Valušis, V. Krozer, and H. G. Roskos  »View Author Affiliations


Optics Express, Vol. 22, Issue 16, pp. 19235-19241 (2014)
http://dx.doi.org/10.1364/OE.22.019235


View Full Text Article

Enhanced HTML    Acrobat PDF (803 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate for the first time the applicability of antenna-coupled field-effect transistors for the detection of terahertz radiation (TeraFETs) for multi-spectral imaging from 0.76 to 4.25 THz. TeraFETs were fabricated in a commercial 90-nm CMOS process and noise-equivalent powers of 59, 20, 63, 85 and 110 pW / Hz at 0.216, 0.59, 2,52, 3.11 and 4.25 THz, respectively, have been achieved. A set of TeraFETs has been applied in raster-scan transmission and reflection imaging of pellets of sucrose and tartaric acid simulating common plastic explosives. Transmittance values are in good agreement with Fourier-transform infrared spectroscopy data. The spatial distribution of the components in the samples has been determined from the transmission data using principal component analysis.

© 2014 Optical Society of America

OCIS Codes
(110.4234) Imaging systems : Multispectral and hyperspectral imaging
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Terahertz Optics

History
Original Manuscript: May 8, 2014
Revised Manuscript: July 10, 2014
Manuscript Accepted: July 11, 2014
Published: July 31, 2014

Citation
M. Bauer, R. Venckevičius, I. Kašalynas, S. Boppel, M. Mundt, L. Minkevičius, A. Lisauskas, G. Valušis, V. Krozer, and H. G. Roskos, "Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 4.25 THz," Opt. Express 22, 19235-19241 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-16-19235


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulic, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test.28(1), 30–35 (2009). [CrossRef]
  2. N. Hasegawa, T. Löffler, M. Thomson, and H. G. Roskos, “Remote identification of protrusions and dents on surfaces by THz reflectometry with spatial beam filtering and out-of-focus detection,” Appl. Phys. Lett.83(19), 3996–3998 (2003). [CrossRef]
  3. D. Banerjee, W. von Spiegel, M. D. Thomson, S. Schabel, and H. G. Roskos, “Diagnosing water content in paper by terahertz radiation,” Opt. Express16(12), 9060–9066 (2008). [CrossRef] [PubMed]
  4. B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol.20(7), S246–S253 (2005). [CrossRef]
  5. A. G. Davies, A. D. Burnett, W. H. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today11(3), 18–26 (2008). [CrossRef]
  6. H. Chen, W.-J. Lee, H.-Y. Huang, C.-M. Chiu, Y.-F. Tsai, T.-F. Tseng, J.-T. Lu, W.-L. Lai, and C.-K. Sun, “Performance of THz fiber-scanning near-field microscopy to diagnose breast tumors,” Opt. Express19(20), 19523–19531 (2011). [CrossRef]
  7. K. Kawase, T. Shibuya, S. Hayashi, and K. Suizu, “THz imaging techniques for nondestructive inspections,” C. R. Phys.11(7–8), 510–518 (2010). [CrossRef]
  8. K. B. Cooper, R. J. Dengler, N. Llombart, A. Talukder, A. V. Panangadan, C. S. Peay, I. Mehdi, and P. H. Siegel, “Fast, high-resolution terahertz radar imaging at 25 meters,” Proc. SPIE7671, 76710Y (2010). [CrossRef]
  9. F. Friederich, W. von Spiegel, M. Bauer, F. Z. Meng, M. D. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Löffler, R. Henneberger, A. K. Huhn, G. Spickermann, P. Haring Bolívar, and H. G. Roskos, “THz active imaging systems with real-time capabilities,” IEEE Trans. Terahertz Sci. Technol.1(1), 183–200 (2011). [CrossRef]
  10. G. Zieger, D. Born, S. Anders, E. Heinz, K. Peiselt, A. Brömel, V. Zakosarenko, T. May, and H.-G. Meyer, “A passive submillimeter video camera for security applications,” in Proceedings of the 38th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), 1–2 (2013). [CrossRef]
  11. Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, and H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” Appl. Phys. Lett.83, 800 (2003). [CrossRef]
  12. F. Platte and H. M. Heise, “Substance identification based on transmission THz spectra using library search,” J. Mol. Struct., in press. [CrossRef]
  13. I. Kašalynas, R. Venckevičius, and G. Valušis, “Continuous wave spectroscopic terahertz imaging with InGaAs bow-tie diodes at room temperature,” IEEE Sens. J.13(1), 50–54 (2013). [CrossRef]
  14. I. Kašalynas, R. Venckevičius, D. Seliuta, I. Grigelionis, and G. Valušis, “InGaAs-based bow-tie diode for spectroscopic terahertz imaging,” J. Appl. Phys.110, 114505 (2011). [CrossRef]
  15. N. Oda, “Uncooled bolometer-type terahertz focal plane array and camera for real-time imaging,” C. R. Phys.11(7–8), 496–509 (2010). [CrossRef]
  16. J. Meilhan, B. Dupont, V. Goudon, G. Lasfargues, J. Lalanne Dera, D. Nguyen, J. Ouvrier-Buffet, S. Pocas, T. Maillou, O. Cathabard, S. Barbieri, and F. Simoens, “Active THz imaging and explosive detection with uncooled antenna-coupled microbolometer arrays,” Proc. SPIE8023, 80230E (2011). [CrossRef]
  17. G. C. Trichopoulos, H. L. Mosbacker, D. Burdette, and K. Sertel, “A broadband focal plane array camera for real-time THz imaging applications,” IEEE Trans. Antennas Propag.61(4), 1733–1740 (2013). [CrossRef]
  18. R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. Keller, A. Cathelin, A. Kaiser, and U. Pfeiffer, “A 1 k-Pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits47(12), 2999–3012 (2012). [CrossRef]
  19. A. Lisauskas, M. Bauer, S. Boppel, M. Mundt, B. Khamaisi, E. Socher, R. Venckevičius, L. Minkevičius, I. Kašalynas, D. Seliuta, G. Valušis, V. Krozer, and H. G. Roskos, “Exploration of terahertz imaging with silicon MOSFETs,” J. Infrared Millim. Te.35(1), 63–80 (2014). [CrossRef]
  20. M. Perenzoni, N. Massari, S. Pocas, J. Meilhan, and F. Simoens, “A monolithic visible, infrared and terahertz 2D detector,” in Proceedings of the 35th International Conference on Infrared, Millimeter and Terahertz Waves IRMMW-THz 2010,1–2 (2010).
  21. A. Lisauskas, W. Von Spiegel, S. Boubanga-Tombet, A. El Fatimy, D. Coquillat, F. Teppe, N. Dyakonova, W. Knap, and H. G. Roskos, “Terahertz imaging with GaAs field-effect transistors,” Electron. Lett.44(6), 408–409 (2008). [CrossRef]
  22. F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express19(8), 7827–7832 (2011). [CrossRef] [PubMed]
  23. S. Boppel, A. Lisauskas, M. Mundt, D. Seliuta, L. Minkevičius, I. Kašalynas, G. Valušis, M. Mittendorff, S. Winnerl, V. Krozer, and H. G. Roskos, “CMOS Integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3 THz,” IEEE Trans. Microwave Theory Tech.60(12), 3834–3843 (2012). [CrossRef]
  24. S. Boppel, A. Lisauskas, and H. G. Roskos, “Terahertz array imagers,” in Handbook of Terahertz Technology for Imaging, Sensing and Communications, D. Saeedkia, ed. (Woodhead Publishing Limited, 2013). [CrossRef]
  25. T. Trzcinski, N. Palka, and M. Szustakowski, “THz spectroscopy of explosive-related simulants and oxidizers,” Bull. Pol. Acad. Sci., Tech. Sci.59(4), 445–447 (2011).
  26. J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X.-C. Zhang, “Absorption coefficients of selected explosives and related compounds in the range of 0.1–2.8 THz,” Opt. Express15(19), 12060–12067 (2007). [CrossRef]
  27. A.K. Huhn, E. Saenz, P. de Maagt, and P.H. Bolivar, “Broadband terahertz analysis of energetic materials influence of crystal structure and additives,” IEEE Trans. Terahertz Sci. Technol.3(5), 649–655 (2013). [CrossRef]
  28. K. Choi, T. Hong, K. Ik Sim, T. Ha, B. Cheol Park, J. Hyuk Chung, S. Gyeong Cho, and J. Hoon Kim, “Reflection terahertz time-domain spectroscopy of RDX and HMX explosives,” J. Appl. Phys.115(2), 023105 (2014). [CrossRef]
  29. P. Dean, M. U. Shaukat, S. P. Khanna, S. Chakraborty, M. Lachab, A. Burnett, G. Davies, and E. H. Linfield, “Absorption-sensitive diffuse reflection imaging of concealed powders using a terahertz quantum cascade laser,” Opt. Express16(9), 5997–6007 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited