OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19242–19251

Lasing threshold control in two-dimensional photonic crystals with gain

Sotiris Droulias, Chris Fietz, Peng Zhang, Thomas Koschny, and Costas M. Soukoulis  »View Author Affiliations


Optics Express, Vol. 22, Issue 16, pp. 19242-19251 (2014)
http://dx.doi.org/10.1364/OE.22.019242


View Full Text Article

Enhanced HTML    Acrobat PDF (5738 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate how the lasing threshold of a two dimensional photonic crystal containing a four-level gain medium is modified, as a result of the interplay between the group velocity and the modal reflectivity at the interface between the cavity and the exterior. Depending on their relative strength and the optical density of states, we show how the lasing threshold may be dramatically altered inside a band or, most importantly, close to the band edge. The idea is realized via self-consistent calculations based on a finite-difference time-domain method. The simulations are in good agreement with theoretical predictions.

© 2014 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: April 15, 2014
Revised Manuscript: June 29, 2014
Manuscript Accepted: July 2, 2014
Published: August 1, 2014

Citation
Sotiris Droulias, Chris Fietz, Peng Zhang, Thomas Koschny, and Costas M. Soukoulis, "Lasing threshold control in two-dimensional photonic crystals with gain," Opt. Express 22, 19242-19251 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-16-19242


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett.18(4), 152–154 (1971).H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys.43(5), 2327–2335 (1972). [CrossRef]
  2. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.75(4), 1896–1899 (1994). [CrossRef]
  3. M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, “Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures,” Phys. Rev. A53(4), 2799–2803 (1996). [CrossRef] [PubMed]
  4. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. Slusher, J. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett.74(1), 7 (1999). [CrossRef]
  5. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett.75(3), 316 (1999). [CrossRef]
  6. S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett.77(15), 2310–2312 (2000). [CrossRef]
  7. H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett.80(19), 3476–3478 (2002). [CrossRef]
  8. S.-H. Kwon, H.-Y. Ryu, G.-H. Kim, Y.-H. Lee, and S.-B. Kim, “Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slabs,” Appl. Phys. Lett.83(19), 3870–3872 (2003). [CrossRef]
  9. X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett.85(17), 3657–3659 (2004). [CrossRef]
  10. F. Raineri, G. Vecchi, A. M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj, and A. Levenson, “Doubly resonant photonic crystal for efficient laser operation: Pumping and lasing at low group velocity photonic modes,” Appl. Phys. Lett.86(1), 011116 (2005). [CrossRef]
  11. C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, and T. Weimann, “Laser diode-pumped organic semiconductor lasers utilizing two-dimensional photonic crystal resonators,” Phot. Tech. Lett.19(10), 741–743 (2007). [CrossRef]
  12. D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett.95(15), 151115 (2009). [CrossRef]
  13. W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater.1(2), 111–113 (2002). [CrossRef] [PubMed]
  14. B. D’Urso, O. Painter, J. Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal refletivity in finite-depth two-dimensional photonic crystal microcavities,” J. Opt. Soc. Am. B15, 1155–1159 (1998).
  15. K. Sakoda, “Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals,” Opt. Express4(5), 167–176 (1999). [CrossRef] [PubMed]
  16. S. Nojima, “Optical-gain enhancement in two-dimensional active photonic crystals,” J. Appl. Phys.90(2), 545–551 (2001). [CrossRef]
  17. L. Florescu, K. Busch, and S. John, “Semiclassical theory of lasing in photonic crystals,” J. Opt. Soc. Am. B19(9), 2215–2223 (2002). [CrossRef]
  18. H.-Y. Ryu, M. Notomi, and Y.-H. Lee, “Finite-difference time-domain investigation of band-edge resonant modes in finite-size two-dimensional photonic crystal slab,” Phys. Rev. B68(4), 045209 (2003). [CrossRef]
  19. N. Susa, “Threshold gain and gain-enhancement due to distributed-feedback in two-dimensional photonic-crystal lasers,” J. Appl. Phys.89(2), 815–823 (2001). [CrossRef]
  20. P. Bermel, E. Lidorikis, Y. Fink, and J. D. Joannopoulos, “Active materials embedded in photonic crystals and coupled to electromagnetic radiation,” Phys. Rev. B73(16), 165125 (2006). [CrossRef]
  21. S. V. Zhukovsky and D. N. Chigrin, “Numerical modelling of lasing in microstructures,” Phys. Status Solidi244(10), 3515–3527 (2007). [CrossRef]
  22. X. Hu, J. Cao, M. Li, Z. Ye, M. Miyawaki, and K.-M. Ho, “Modeling of three-dimensional photonic crystal lasers in a frequency domain: A scattering matrix solution,” Phys. Rev. B77(20), 205104 (2008). [CrossRef]
  23. A. Fang, T. Koschny, and C. M. Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt.12(2), 024013 (2010). [CrossRef]
  24. C. Fietz and C. M. Soukoulis, “Finite element simulation of microphotonic lasing system,” Opt. Express20(10), 11548–11560 (2012). [CrossRef] [PubMed]
  25. C. Fietz, “Absorbing boundary condition for Bloch-Floquet eigenmodes,” J. Opt. Soc. Am. B30(10), 2615–2620 (2013). [CrossRef]
  26. Y. Pinhasi, A. Yalalom, and G. A. Pinhasi, “Propagation analysis of ultrashort pulses in resonant dielectric media,” J. Opt. Soc. Am. B26(12), 2404–2413 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited