OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19252–19261

Electron beam excitation of surface plasmon polaritons

Sen Gong, Min Hu, Renbin Zhong, Xiaoxing Chen, Ping Zhang, Tao Zhao, and Shenggang Liu  »View Author Affiliations


Optics Express, Vol. 22, Issue 16, pp. 19252-19261 (2014)
http://dx.doi.org/10.1364/OE.22.019252


View Full Text Article

Enhanced HTML    Acrobat PDF (1120 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, the excitations of surface plasmon polaritons (SPPs) by both perpendicular and parallel electron beam are investigated. The results of analytical theory and numerical calculation show that the mechanisms of these two excitations are essentially different, and the behavior and properties of SPPs in metal structures strongly depend on the methods of excitation. For the perpendicular excitation, SPPs contain plenty of frequency components, propagate with attenuation and are always accompanied with the transition radiation. Whereas for parallel excitation, SPPs waves are coherent, tunable, propagating without attenuation and the transition radiation does not occur. We also show that there are two modes for the parallel excited SPPs on the metal films and they all can be excited efficiently by the parallel moving electron beam. And the operating frequency of SPPs can be tuned in a large frequency range by adjusting the beam energy.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: April 17, 2014
Revised Manuscript: June 18, 2014
Manuscript Accepted: July 18, 2014
Published: August 1, 2014

Citation
Sen Gong, Min Hu, Renbin Zhong, Xiaoxing Chen, Ping Zhang, Tao Zhao, and Shenggang Liu, "Electron beam excitation of surface plasmon polaritons," Opt. Express 22, 19252-19261 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-16-19252


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin Heidelberg, 1988).
  2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3-4), 131–314 (2005). [CrossRef]
  3. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1-2), 3–15 (1999). [CrossRef]
  4. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003). [CrossRef] [PubMed]
  5. D. W. Pohl, Near-field optics and the surface plasmon polariton (Springer-Verlag, Berlin Heidelberg, 2001).
  6. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004). [CrossRef] [PubMed]
  7. S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett.109(15), 153902 (2012). [CrossRef] [PubMed]
  8. S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett.104(20), 201104 (2014). [CrossRef]
  9. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  10. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission though subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998). [CrossRef]
  11. D. Yang, T. Li, L. Rao, S. Xia, and L. Zhang, “Terahertz functional devices based on photonic crystal and surface plasmon polaritons,” Terahertz Science and Technology5, 131–143 (2012).
  12. A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt.5(4), S16–S50 (2003). [CrossRef]
  13. F. J. G. de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys.82(1), 209–275 (2010). [CrossRef]
  14. M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett.6(6), 1113–1115 (2006). [CrossRef] [PubMed]
  15. W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett.9(3), 1176–1181 (2009). [CrossRef] [PubMed]
  16. J. Zhou, M. Hu, Y. Zhang, P. Zhang, W. Liu, and S. Liu, “Numerical analysis of electron-induced surface plasmon excitation using the FDTD method,” J. Opt.13(3), 035003 (2011). [CrossRef]
  17. M. Hu, Y. Zhang, Y. Yang, B. Zhong, and S. Liu, “Terahertz radiation from interaction between an electron beam and a planar surface plasmon structure,” Chin.Phys.B.18(9), 3877–3882 (2009). [CrossRef]
  18. J. Lecante, Y. Ballu, and D. M. Newns, “Electron-surface-plasmon scattering using a parabolic nontouching trajectory,” Phys. Rev. Lett.38(1), 36–40 (1977). [CrossRef]
  19. J. H. Brownell, J. Walsh, and G. Doucas, “Spontaneous smith-purcell radiation described through induced surface currents,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics57(1), 1075–1080 (1998). [CrossRef]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, 1985).
  21. N.W. Ashcroft and N. Mermin, Solid state physics (Thomson Learning, Toronto, Canada, 1976).
  22. P. Drude, “Zur elektronentheorie der metalle,” Ann. Phys.306(3), 566–613 (1900). [CrossRef]
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  24. F. G. Bass and V. M. Yakovenko, “Theory of radiation from a charge passing through an electrically inhomogeneous medium,” Sov. Phys. Usp.8(3), 420–444 (1965). [CrossRef]
  25. S. Liu, Relativistic electronics (Science Press, Beijing, 1987).
  26. V. L. Ginzburg and V. N. Tsytovich, Transition radiation and transition scattering (Adam Hilger, Bristol and New York, 1990)
  27. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal,” Phys. Rep.113(4), 195–287 (1984). [CrossRef]
  28. S. Liu, M. Hu, Y. Zhang, Y. Li, and R. Zhong, “Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(3), 036602 (2009). [CrossRef] [PubMed]
  29. E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett.7(9), 2843–2846 (2007). [CrossRef] [PubMed]
  30. M. V. Bashevoy, F. Jonsson, K. F. Macdonald, Y. Chen, and N. I. Zheludev, “Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution,” Opt. Express15(18), 11313–11320 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited