OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19284–19292

Ge/SiGe quantum confined Stark effect electro-absorption modulation with low voltage swing at λ = 1550 nm

D. C. S. Dumas, K. Gallacher, S. Rhead, M. Myronov, D. R. Leadley, and D. J. Paul  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 19284-19292 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1919 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Low-voltage swing (≤1.0 V) high-contrast ratio (6 dB) electro-absorption modulation covering 1460 to 1560 nm wavelength has been demonstrated using Ge/SiGe quantum confined Stark effect (QCSE) diodes grown on a silicon substrate. The heterolayers for the devices were designed using an 8-band k.p Poisson-Schrödinger solver which demonstrated excellent agreement with the experimental results. Modelling and experimental results demonstrate that by changing the quantum well width of the device, low power Ge/SiGe QCSE modulators can be designed to cover the S- and C-telecommunications bands.

© 2014 Optical Society of America

OCIS Codes
(230.0250) Optical devices : Optoelectronics
(230.2090) Optical devices : Electro-optical devices
(230.4110) Optical devices : Modulators
(230.4205) Optical devices : Multiple quantum well (MQW) modulators

ToC Category:

Original Manuscript: June 9, 2014
Revised Manuscript: July 24, 2014
Manuscript Accepted: July 24, 2014
Published: August 1, 2014

D. C. S. Dumas, K. Gallacher, S. Rhead, M. Myronov, D. R. Leadley, and D. J. Paul, "Ge/SiGe quantum confined Stark effect electro-absorption modulation with low voltage swing at λ = 1550 nm," Opt. Express 22, 19284-19292 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Paul, “Silicon photonics: a bright future?” Elec. Lett. 45, 582–584 (2009). [CrossRef]
  2. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009). [CrossRef]
  3. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature Photon. 4, 518–526 (2010). [CrossRef]
  4. F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nature Comm. 2, 296 (2011). [CrossRef]
  5. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005). [CrossRef] [PubMed]
  6. D. J. Thomson, F. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012). [CrossRef]
  7. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nature Photon. 2, 433–437 (2008). [CrossRef]
  8. D. Feng, S. Liao, H. Liang, J. Fong, B. Bijlani, R. Shafiiha, B. J. Luff, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide,” Opt. Express 20, 22224–22232 (2012). [CrossRef] [PubMed]
  9. Y. H. Kuo, Y. K. Lee, Y. S. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005). [CrossRef] [PubMed]
  10. E. H. Edwards, L. Lever, E. T. Fei, T. I. Kamins, Z. Ikonic, J. S. Harris, R. W. Kelsall, and D. A. B. Miller, “Low-voltage broad-band electroabsorption from thin Ge/SiGe quantum wells epitaxially grown on silicon,” Opt. Express 21, 867–876 (2013). [CrossRef] [PubMed]
  11. P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nature Photon. 8, 482–488 (2014). [CrossRef]
  12. P. Chaisakul, D. Marris-Morini, M. S. Rouifed, J. Frigerio, G. Isella, D. Chrastina, J.-R. Coudevylle, X. L. Roux, S. Edmond, D. Bouville, and L. Vivien, “Strong quantum-confined Stark effect from light hole related direct-gap transitions in Ge quantum wells,” Appl. Phys. Letts. 102, 191107 (2013). [CrossRef]
  13. ( http://www.nextnano.de/nextnano3/ ).
  14. D. J. Paul, “The progress towards terahertz quantum cascade lasers on silicon substrates,” Laser & Photon. Rev. 4, 610–632 (2010). [CrossRef]
  15. D. J. Paul, “8-band k.p modeling of the quantum confined Stark effect in Ge quantum wells on Si substrates,” Phys. Rev. B 77, 155323 (2008). [CrossRef]
  16. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984). [CrossRef]
  17. S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Letts. 24, 461–463 (2012). [CrossRef]
  18. M. S. Rouifed, P. Chaisakul, D. Marris-Morini, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Quantum-confined Stark effect at 1.3μm in Ge/Si0.35Ge0.65 quantum-well structure,” Opt. Lett. 37, 3960–3962 (2012). [CrossRef] [PubMed]
  19. E. H. Edwards, R. M. Audet, E. T. Fei, S. A. Claussen, R. K. Schaevitz, E. Tasyurek, Y. Rong, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe asymmetric Fabry-Perot quantum well electroabsorption modulators,” Opt. Express 20, 29164–29173 (2012). [CrossRef]
  20. V. Shah, A. Dobbie, M. Myronov, and D. Leadley, “High quality relaxed Ge layers grown directly on a Si (001) substrate,” Solid-State Electron. 62, 189–194 (2011). [CrossRef]
  21. M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (∼50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012). [CrossRef]
  22. K. Gallacher, P. Velha, D. J. Paul, I. MacLaren, M. Myronov, and D. R. Leadley, “Ohmic contacts to n-type germanium with low specific contact resistivity,” Appl. Phys. Letts. 100, 022113 (2012). [CrossRef]
  23. M. Vanecek and A. Poruba, “Fourier-transform photocurrent spectroscopy of microcrystalline silicon for solar cells,” Appl. Phys. Letts. 80, 719–721 (2002). [CrossRef]
  24. R. Schaevitz, J. Roth, S. Ren, O. Fidaner, and D. Miller, “Material properties of Si-Ge/Ge quantum wells,” IEEE J. Select. Topics Quantum Elec. 14, 1082–1089 (2008). [CrossRef]
  25. P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. L. Roux, E. Gatti, S. Edmond, J. Osmond, E. Cassan, and L. Vivien, “Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures,” Opt. Lett. 35, 2913–2915 (2010). [CrossRef] [PubMed]
  26. Semiconductor Industry Association, “International technology roadmap for semiconductors,” Tech. rep., Semiconductor Industry Association (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited