OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19293–19301

Simultaneous multiplane confocal microscopy using acoustic tunable lenses

Martí Duocastella, Giuseppe Vicidomini, and Alberto Diaspro  »View Author Affiliations


Optics Express, Vol. 22, Issue 16, pp. 19293-19301 (2014)
http://dx.doi.org/10.1364/OE.22.019293


View Full Text Article

Enhanced HTML    Acrobat PDF (2243 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Maximizing the amount of spatiotemporal information retrieved in confocal laser scanning microscopy is crucial to understand fundamental three-dimensional (3D) dynamic processes in life sciences. However, current 3D confocal microscopy is based on an inherently slow stepwise process that consists of acquiring multiple 2D sections at different focal planes by mechanical or optical z-focus translation. Here, we show that by using an acoustically-driven optofluidic lens integrated in a commercial confocal system we can capture an entire 3D image in a single step. Our method is based on continuous axial scanning at speeds as high as 140 kHz combined with fast readout. In this way, one or more focus sweeps are produced on a pixel by pixel basis and the detected photons can be assigned to their corresponding focal plane enabling simultaneous multiplane imaging. We exemplify this method by imaging calibration and biological fluorescence samples. These results open the door to exploring new fundamental processes in science with an unprecedented time resolution.

© 2014 Optical Society of America

OCIS Codes
(170.1790) Medical optics and biotechnology : Confocal microscopy
(180.0180) Microscopy : Microscopy
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Microscopy

History
Original Manuscript: June 23, 2014
Revised Manuscript: July 25, 2014
Manuscript Accepted: July 25, 2014
Published: August 4, 2014

Virtual Issues
Vol. 9, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Martí Duocastella, Giuseppe Vicidomini, and Alberto Diaspro, "Simultaneous multiplane confocal microscopy using acoustic tunable lenses," Opt. Express 22, 19293-19301 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-16-19293


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Diaspro, Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances (Wiley-Liss, 2002).
  2. J. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2006).
  3. A. Diaspro, F. Beltrame, M. Fato, and P. Ramoino, “Characterizing biostructures and cellular events in 2D/3D,” IEE Eng. Med. Biol.15(1), 92–100 (1996). [CrossRef]
  4. F. P. Martial and N. A. Hartell, “Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror,” PLoS ONE7(8), e43942 (2012). [CrossRef] [PubMed]
  5. N. Callamaras and I. Parker, “Construction of a confocal microscope for real-time x-y and x-z imaging,” Cell Calcium26(6), 271–279 (1999). [CrossRef] [PubMed]
  6. G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci.11(6), 713–720 (2008). [CrossRef] [PubMed]
  7. E. J. Botcherby, M. J. Booth, R. Juskaitis, and T. Wilson, “Real-time extended depth of field microscopy,” Opt. Express16(26), 21843–21848 (2008). [CrossRef] [PubMed]
  8. U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluidics4(1–2), 97–105 (2008). [CrossRef]
  9. W. Song, A. E. Vasdekis, and D. Psaltis, “Elastomer based tunable optofluidic devices,” Lab Chip12(19), 3590–3597 (2012). [CrossRef] [PubMed]
  10. N.-T. Nguyen, “Micro-optofluidic lenses: a review,” Biomicrofluidics4(3), 031501 (2010). [CrossRef] [PubMed]
  11. H. Oku and M. Ishikawa, “A variable-focus lens with 1kHz bandwidth applied to axial-scan of a confocal scanning microscope,” in Lasers Electro-Optics Soc. 2003. LEOS 2003 (2003), Vol. 1, pp. 309–310.
  12. H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett.94(22), 221108 (2009). [CrossRef]
  13. J. M. Jabbour, B. H. Malik, C. Olsovsky, R. Cuenca, S. Cheng, J. A. Jo, Y.-S. L. Cheng, J. M. Wright, and K. C. Maitland, “Optical axial scanning in confocal microscopy using an electrically tunable lens,” Biomed. Opt. Express5(2), 645–652 (2014). [CrossRef] [PubMed]
  14. N. Koukourakis, M. Finkeldey, M. Stürmer, C. Leithold, N. C. Gerhardt, M. R. Hofmann, U. Wallrabe, J. W. Czarske, and A. Fischer, “Axial scanning in confocal microscopy employing adaptive lenses (CAL),” Opt. Express22(5), 6025–6039 (2014). [CrossRef] [PubMed]
  15. H. S. Chen and Y. H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express21(15), 18079–18088 (2013). [CrossRef] [PubMed]
  16. F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express21(18), 21010–21026 (2013). [CrossRef] [PubMed]
  17. B. F. Grewe, F. F. Voigt, M. van ’t Hoff, and F. Helmchen, “Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens,” Biomed. Opt. Express2(7), 2035–2046 (2011). [CrossRef] [PubMed]
  18. A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens,” Opt. Lett.33(18), 2146–2148 (2008). [CrossRef] [PubMed]
  19. M. Duocastella, B. Sun, and C. B. Arnold, “Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics,” J. Biomed. Opt.17(5), 050505 (2012). [CrossRef] [PubMed]
  20. N. Olivier, A. Mermillod-Blondin, C. B. Arnold, and E. Beaurepaire, “Two-photon microscopy with simultaneous standard and extended depth of field using a tunable acoustic gradient-index lens,” Opt. Lett.34(11), 1684–1686 (2009). [CrossRef] [PubMed]
  21. M. Duocastella and C. B. Arnold, “Enhanced depth of field laser processing using an ultra-high-speed axial scanner,” Appl. Phys. Lett.102(6), 061113 (2013). [CrossRef]
  22. W. E. Ortyn, D. J. Perry, V. Venkatachalam, L. Liang, B. E. Hall, K. Frost, and D. A. Basiji, “Extended depth of field imaging for high speed cell analysis,” Cytometry A71(4), 215–231 (2007). [CrossRef] [PubMed]
  23. W. Amir, R. Carriles, E. E. Hoover, T. A. Planchon, C. G. Durfee, and J. A. Squier, “Simultaneous imaging of multiple focal planes using a two-photon scanning microscope,” Opt. Lett.32(12), 1731–1733 (2007). [CrossRef] [PubMed]
  24. A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods8(2), 139–142 (2011). [CrossRef] [PubMed]
  25. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt.34(11), 1859–1866 (1995). [CrossRef] [PubMed]
  26. B. Schmid, J. Schindelin, A. Cardona, M. Longair, and M. Heisenberg, “A high-level 3D visualization API for Java and ImageJ,” BMC Bioinformatics11(1), 274 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: AVI (1703 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited