OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19302–19313

Elliptic-symmetry vector optical fields

Yue Pan, Yongnan Li, Si-Min Li, Zhi-Cheng Ren, Ling-Jun Kong, Chenghou Tu, and Hui-Tian Wang  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 19302-19313 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4427 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present in principle and demonstrate experimentally a new kind of vector fields: elliptic-symmetry vector optical fields. This is a significant development in vector fields, as this breaks the cylindrical symmetry and enriches the family of vector fields. Due to the presence of an additional degrees of freedom, which is the interval between the foci in the elliptic coordinate system, the elliptic-symmetry vector fields are more flexible than the cylindrical vector fields for controlling the spatial structure of polarization and for engineering the focusing fields. The elliptic-symmetry vector fields can find many specific applications from optical trapping to optical machining and so on.

© 2014 Optical Society of America

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(260.5430) Physical optics : Polarization
(260.6042) Physical optics : Singular optics
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Physical Optics

Original Manuscript: June 13, 2014
Revised Manuscript: July 16, 2014
Manuscript Accepted: July 16, 2014
Published: August 4, 2014

Virtual Issues
Vol. 9, Iss. 10 Virtual Journal for Biomedical Optics

Yue Pan, Yongnan Li, Si-Min Li, Zhi-Cheng Ren, Ling-Jun Kong, Chenghou Tu, and Hui-Tian Wang, "Elliptic-symmetry vector optical fields," Opt. Express 22, 19302-19313 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009). [CrossRef]
  2. G. M. Lerman, Y. Lilach, and U. Levy, “Demonstration of spatially inhomogeneous vector beams with elliptical symmetry,” Opt. Lett. 34, 1669–1671 (2009). [CrossRef] [PubMed]
  3. X. L. Wang, J. P. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549–3551 (2007). [CrossRef] [PubMed]
  4. X. L. Wang, Y. N. Li, J. Chen, C. S. Guo, J. P. Ding, and H. T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18, 10786–10795 (2010). [CrossRef] [PubMed]
  5. J. C. Gutiérrez-Vega, R. M. Rodríguez-Dagnino, M. A. Meneses-Nava, and S. Chávez-Cerda, “Mathieu functions, a visual approach,” Am. J. Phys. 71, 233–242 (2003). [CrossRef]
  6. X. L. Wang, J. Chen, Y. N. Li, J. P. Ding, C. S. Guo, and H. T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105, 253602 (2010). [CrossRef]
  7. M. A. Bandres and J. C. Gutiérrez-Vega, “Ince-Gaussian beams,” Opt. Lett. 29, 144–146 (2004). [CrossRef] [PubMed]
  8. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25, 1493–1495 (2000). [CrossRef]
  9. J. C. Gutiérrez-Vega and M. A. Bandres, “Helmholtz-Gauss waves,” J. Opt. Soc. Am. A 22, 289–298 (2005). [CrossRef]
  10. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253, 358–379 (1959). [CrossRef]
  11. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000). [CrossRef] [PubMed]
  12. G. M. Lerman and U. Levy, “Tight focusing of spatially variant vector optical fields with elliptical symmetry of linear polarization,” Opt. Lett. 32, 2194–2196 (2007). [CrossRef] [PubMed]
  13. M. Rashid, O. M. Maragò, and P. H. Jones, “Focusing of high order cylindrical vector beams,” J. Opt. A 11, 1–7 (2009). [CrossRef]
  14. X. L. Wang, J. P. Ding, J. Q. Qin, J. Chen, Y. X. Fan, and H. T. Wang, “Configurable three-dimensional optical cage generated from cylindrical vector beams,” Opt. Commun. 282, 3421–3425 (2009). [CrossRef]
  15. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004). [CrossRef] [PubMed]
  16. W. Chen and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Opt. Commun. 265, 411–417 (2006). [CrossRef]
  17. Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express 18, 10828–10833 (2010). [CrossRef] [PubMed]
  18. M. G. Donato, S. Vasi, P. H. Jones, R. Sayed, F. Bonaccorso, A. C. Ferrari, P. G. Gucciardi, and O. M. Maragò, “Optical trapping of nanotubes with cylindrical vector beams,” Opt. Lett. 37, 3381–3383 (2012). [CrossRef]
  19. C. Hnatovsky, V. G. Shvedov, N. Shostka, A. V. Rode, and W. Krolikowski, “Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses,” Opt. Lett. 37, 226–228 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited