OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19314–19326

Stability in computed optical interferometric tomography (Part II): in vivo stability assessment

Nathan D. Shemonski, Adeel Ahmad, Steven G. Adie, Yuan-Zhi Liu, Fredrick A. South, P. Scott Carney, and Stephen A. Boppart  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 19314-19326 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1325 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Stability is of utmost importance to a wide range of phase-sensitive processing techniques. In Doppler optical coherence tomography and optical coherence elastography, in addition to defocus and aberration correction techniques such as interferometric synthetic aperture microscopy and computational/digital adaptive optics, a precise understanding of the system and sample stability helps to guide the system design and choice of imaging parameters. This article focuses on methods to accurately and quantitatively measure the stability of an imaging configuration in vivo. These methods are capable of partially decoupling axial from transverse motion and are compared against the stability requirements for computed optical interferometric tomography laid out in the first part of this article.

© 2014 Optical Society of America

OCIS Codes
(100.5090) Image processing : Phase-only filters
(110.4280) Imaging systems : Noise in imaging systems
(110.4500) Imaging systems : Optical coherence tomography
(110.3175) Imaging systems : Interferometric imaging
(110.3010) Imaging systems : Image reconstruction techniques
(110.3200) Imaging systems : Inverse scattering

ToC Category:
Image Processing

Original Manuscript: June 2, 2014
Revised Manuscript: July 21, 2014
Manuscript Accepted: July 21, 2014
Published: August 4, 2014

Virtual Issues
Vol. 9, Iss. 10 Virtual Journal for Biomedical Optics

Nathan D. Shemonski, Adeel Ahmad, Steven G. Adie, Yuan-Zhi Liu, Fredrick A. South, P. Scott Carney, and Stephen A. Boppart, "Stability in computed optical interferometric tomography (Part II): in vivo stability assessment," Opt. Express 22, 19314-19326 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11(7), 794–809 (2003). [CrossRef] [PubMed]
  2. V. X. D. Yang, M. L. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis,” Opt. Express 11(14), 1650–1658 (2003). [CrossRef] [PubMed]
  3. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007). [CrossRef] [PubMed]
  4. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009). [CrossRef] [PubMed]
  5. A. L. Oldenburg, F. J. J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13(17), 6597–6614 (2005). [CrossRef] [PubMed]
  6. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30(16), 2131–2133 (2005). [CrossRef] [PubMed]
  7. W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012). [CrossRef] [PubMed]
  8. V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, and S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express 17(25), 23114–23122 (2009). [CrossRef] [PubMed]
  9. V. Crecea, A. Ahmad, and S. A. Boppart, “Magnetomotive optical coherence elastography for microrheology of biological tissues,” J. Biomed. Opt. 18(12), 121504 (2013). [CrossRef] [PubMed]
  10. C. Dorronsoro, D. Pascual, P. Pérez-Merino, S. Kling, and S. Marcos, “Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas,” Biomed. Opt. Express 3(3), 473–487 (2012). [CrossRef] [PubMed]
  11. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007). [CrossRef]
  12. B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Non-paraxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 24(9), 2527–2542 (2007). [CrossRef]
  13. B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: computed imaging for scanned coherent microscopy,” Sensors (Basel) 8(6), 3903–3931 (2008). [CrossRef] [PubMed]
  14. S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012). [CrossRef] [PubMed]
  15. S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. Scott Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012). [CrossRef] [PubMed]
  16. A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013). [CrossRef] [PubMed]
  17. D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy--holographic optical coherence tomography,” Opt. Lett. 36(13), 2390–2392 (2011). [CrossRef] [PubMed]
  18. D. Hillmann, G. Franke, C. Lührs, P. Koch, and G. Hüttmann, “Efficient holoscopy image reconstruction,” Opt. Express 20(19), 21247–21263 (2012). [CrossRef] [PubMed]
  19. N. D. Shemonski, S. G. Adie, Y.-Z. L. F. A. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part I): Stability requirements,” (to be published).
  20. W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett. 38(3), 338–340 (2013). [CrossRef] [PubMed]
  21. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Phase stability technique for inverse scattering in optical coherence tomography,” in Proceedings of 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro (2006), pp. 578–581. [CrossRef]
  22. C. Sun, F. Nolte, K. H. Y. Cheng, B. Vuong, K. K. C. Lee, B. A. Standish, B. Courtney, T. R. Marotta, A. Mariampillai, and V. X. D. Yang, “In vivo feasibility of endovascular Doppler optical coherence tomography,” Biomed. Opt. Express 3(10), 2600–2610 (2012). [CrossRef] [PubMed]
  23. M.-T. Tsai, T.-T. Chi, H.-L. Liu, F.-Y. Chang, C.-H. Yang, C.-K. Lee, and C.-C. Yang, “Microvascular imaging using swept-source optical coherence tomography with single-channel acquisition,” Appl. Phys. Express 4(9), 097001 (2011). [CrossRef]
  24. M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Phase contrast coherence microscopy based on transverse scanning,” Opt. Lett. 34(12), 1750–1752 (2009). [CrossRef] [PubMed]
  25. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005). [CrossRef] [PubMed]
  26. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31(10), 1462–1464 (2006). [CrossRef] [PubMed]
  27. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23(5), 1027–1037 (2006). [CrossRef] [PubMed]
  28. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express 18(3), 2477–2494 (2010). [CrossRef] [PubMed]
  29. B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009). [CrossRef] [PubMed]
  30. B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm,” Opt. Express 13(11), 3931–3944 (2005). [CrossRef] [PubMed]
  31. B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20(18), 20516–20534 (2012). [CrossRef] [PubMed]
  32. J. Lee, V. Srinivasan, H. Radhakrishnan, and D. A. Boas, “Motion correction for phase-resolved dynamic optical coherence tomography imaging of rodent cerebral cortex,” Opt. Express 19(22), 21258–21270 (2011). [CrossRef] [PubMed]
  33. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003). [CrossRef] [PubMed]
  34. X. Liu, Y. Huang, and J. U. Kang, “Distortion-free freehand-scanning OCT implemented with real-time scanning speed variance correction,” Opt. Express 20(15), 16567–16583 (2012). [CrossRef]
  35. A. Ahmad, S. G. Adie, E. J. Chaney, U. Sharma, and S. A. Boppart, “Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography,” Opt. Express 17(10), 8125–8136 (2009). [CrossRef] [PubMed]
  36. X. Liu, J. C. Ramella-Roman, Y. Huang, Y. Guo, and J. U. Kang, “Robust spectral-domain optical coherence tomography speckle model and its cross-correlation coefficient analysis,” J. Opt. Soc. Am. A 30(1), 51–59 (2013). [CrossRef] [PubMed]
  37. B. W. Graf, S. G. Adie, and S. A. Boppart, “Correction of coherence gate curvature in high numerical aperture optical coherence imaging,” Opt. Lett. 35(18), 3120–3122 (2010). [CrossRef] [PubMed]
  38. A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013). [CrossRef] [PubMed]
  39. B. Považay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, “Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography,” Opt. Express 17(5), 4134–4150 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited