OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19337–19347

Quantification of different water species in acetone using a NIR-triple-wavelength fiber laser

Nicholas L. P. Andrews, Amy G. MacLean, John E. Saunders, Jack A. Barnes, Hans-Peter Loock, Mohammed Saad, Chenglai Jia, Kishor Ramaswamy, and Lawrence R. Chen  »View Author Affiliations


Optics Express, Vol. 22, Issue 16, pp. 19337-19347 (2014)
http://dx.doi.org/10.1364/OE.22.019337


View Full Text Article

Enhanced HTML    Acrobat PDF (1183 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fiber laser using a thulium-doped ZBLAN gain medium was used to generate laser radiation simultaneously at 1461, 1505 and 1874 nm, with > 5 mW output power at each of the wavelengths. The laser was used to quantify the near-infrared absorption of liquid water in acetone. Additionally, near-infrared spectra were recorded using a broad band source and were interpreted using parallel factor (PARAFAC) analysis to rationalize the concentration-dependent peak shifts.

© 2014 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(300.1030) Spectroscopy : Absorption

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 2, 2014
Revised Manuscript: July 18, 2014
Manuscript Accepted: July 25, 2014
Published: August 4, 2014

Citation
Nicholas L. P. Andrews, Amy G. MacLean, John E. Saunders, Jack A. Barnes, Hans-Peter Loock, Mohammed Saad, Chenglai Jia, Kishor Ramaswamy, and Lawrence R. Chen, "Quantification of different water species in acetone using a NIR-triple-wavelength fiber laser," Opt. Express 22, 19337-19347 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-16-19337


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng.44(7), 699–710 (2006). [CrossRef]
  2. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photon.6(7), 423–431 (2012). [CrossRef]
  3. N. J. Scott, C. M. Cilip, and N. M. Fried, “Thulium fiber laser ablation of urinary stones through small-core optical fibers,” IEEE J. Sel. Top. Quantum Electron.15(2), 435–440 (2009). [CrossRef]
  4. M. Güney, B. Tunc, and M. Gulsoy, “Incisional effects of 1940 nm thulium fiber laser on oral soft tissues,” Proc. SPIE8584, 848408 (2013).
  5. B. Tunc and M. Gulsoy, “Tm:fiber laser ablation with real-time temperature monitoring for minimizing collateral thermal damage: ex vivo dosimetry for ovine brain,” Lasers Surg. Med.45(1), 48–56 (2013). [CrossRef] [PubMed]
  6. N. M. Fried, “Thulium fiber laser lithotripsy: An in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 mu m,” Lasers Surg. Med.37(1), 53–58 (2005). [CrossRef] [PubMed]
  7. N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol.19(1), 25–31 (2005). [CrossRef] [PubMed]
  8. M. C. Pierce, S. D. Jackson, M. R. Dickinson, and T. A. King, “Laser-tissue interaction with a high-power 2-microm fiber laser: Preliminary studies with soft tissue,” Lasers Surg. Med.25(5), 407–413 (1999). [CrossRef] [PubMed]
  9. P. Peterka, I. Kasik, A. Dhar, B. Dussardier, and W. Blanc, “Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime,” Opt. Express19(3), 2773–2781 (2011). [CrossRef] [PubMed]
  10. C. Xia, “Mid-infrared supercontinuum laser system and its biomedical applications,” Ph.D. Dissertation (University of Michigan, Ann Arbor, 2009).
  11. G. Qin, S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “784-nm amplified spontaneous emission from Tm3+-doped fluoride glass fiber pumped by an 1120-nm fiber laser,” Opt. Lett.30(3), 269–271 (2005). [CrossRef] [PubMed]
  12. G. Qin, S. Huang, Y. Feng, A. Shirakawa, and K.-I. Ueda, “Multiple-wavelength up-conversion laser in Tm3+-doped ZBLAN glass fiber,” IEEE Photon. Technol. Lett.17(9), 1818–1820 (2005). [CrossRef]
  13. G. Androz, D. Faucher, D. Gingras, and R. Vallée, “Self-pulsing dynamics of a dual-wavelength Tm3+:ZBLAN upconversion fiber laser emitting around 800 nm,” J. Opt. Soc. Am. B24(11), 2907–2913 (2007). [CrossRef]
  14. B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, S. Thomas, P. Long, and M. Saad, “Dual-wavelength lasing around 800 nm in a Tm:ZBLAN fibre laser,” in IEEE Photonics Conference, (2012), pp. 668–669. [CrossRef]
  15. B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, and M. Saad, “Dual-wavelength S-band Tm3+:ZBLAN fibre laser with 0.6 nm wavelength spacing,” Electron. Lett.49(1), 60–62 (2013). [CrossRef]
  16. K. Ramaswamy, C. Jia, M. Dastmalchi, L. R. Chen, and M. Saad, “Dual-band 810/1480 nm Tm3+:ZBLAN fiber laser,” in IEEE Photonics Conference (2013), pp. 273–274.
  17. W. J. Peng, F. P. Yan, Q. Li, S. Liu, T. Feng, S. Y. Tan, and S. C. Feng, “1.94 μm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating,” Appl. Opt.52(19), 4601–4607 (2013). [CrossRef] [PubMed]
  18. J. J. Max and C. Chapados, “Infrared spectroscopy of acetone-water liquid mixtures. II. Molecular model,” J. Chem. Phys.120(14), 6625–6641 (2004). [CrossRef] [PubMed]
  19. J. J. Max and C. Chapados, “Infrared spectroscopy of acetone-water liquid mixtures. I. Factor analysis,” J. Chem. Phys.119(11), 5632–5643 (2003). [CrossRef]
  20. Y. Koga, F. Sebe, T. Minami, K. Otake, K. Saitow, and K. Nishikawa, “Spectrum of excess partial molar absorptivity. I. Near infrared spectroscopic study of aqueous acetonitrile and acetone,” J. Phys. Chem. B113(35), 11928–11935 (2009). [CrossRef] [PubMed]
  21. A. Estrada-Baltazar, A. De Leon-Rodriguez, K. R. Hall, M. Ramos-Estrada, and G. A. Iglesias-Silva, “Experimental densities and excess volumes for binary mixtures containing propionic acid, acetone, and water from 283.15 K to 323.15 K at atmospheric pressure,” J. Chem. Eng. Data48(6), 1425–1431 (2003). [CrossRef]
  22. L. Bøje and A. Hvidt, “Densities of aqueous mixtures of non-electrolytes,” J. Chem. Thermodyn.3(5), 663–673 (1971). [CrossRef]
  23. K. Noda, M. Ohashi, and K. Ishida, “Viscosities and densities at 298.15 K for mixtures of methanol, acetone, and water,” J. Chem. Eng. Data27(3), 326–328 (1982). [CrossRef]
  24. S. L. Pan, C. Y. Lou, and Y. Z. Gao, “Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter,” Opt. Express14(3), 1113–1118 (2006). [CrossRef] [PubMed]
  25. J. E. Bertie and Z. D. Lan, “Infrared intensities of liquids. 20. The intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O at 25 degrees °C between 15,000 and 1 cm−1,” Appl. Spectrosc.50, 1047–1057 (1996). [CrossRef]
  26. B. Dickens and S. H. Dickens, “Estimation of concentration and bonding environment of water dissolved in common solvents using near infrared absorptivity,” J. Res. Natl. Inst. Stand.104(2), 173–183 (1999). [CrossRef]
  27. B. Czarnik-Matusewicz and S. Pilorz, “Study of the temperature-dependent near-infrared spectra of water by two-dimensional correlation spectroscopy and principal components analysis,” Vib. Spectrosc.40(2), 235–245 (2006). [CrossRef]
  28. B. Czarnik-Matusewicz, S. Pilorz, and J. P. Hawranek, “Temperature-dependent water structural transitions examined by near-IR and mid-IR spectra analyzed by multivariate curve resolution and two-dimensional correlation spectroscopy,” Anal. Chim. Acta544(1–2), 15–25 (2005). [CrossRef]
  29. K. R. Murphy, C. A. Stedmon, D. Graeber, and R. Bro, “Fluorescence spectroscopy and multi-way techniques. PARAFAC,” Anal. Methods5(23), 6557–6566 (2013). [CrossRef]
  30. R. Bro and H. A. L. Kiers, “A new efficient method for determining the number of components in PARAFAC models,” J. Chemometr.17(5), 274–286 (2003). [CrossRef]
  31. H. P. Loock and P. D. Wentzell, “Detection limits of chemical sensors: Applications and misapplications,” Sens. Act., Biol. Chem.173, 157–163 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited