OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19375–19385

Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction

Hongfei Shi, Can Wang, Zhipei Sun, Yueliang Zhou, Kuijuan Jin, Simon A. T. Redfern, and Guozhen Yang  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 19375-19385 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1497 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Reduced graphene oxides with varying degrees of reduction have been produced by hydrazine reduction of graphene oxide. The linear and nonlinear optical properties of both graphene oxide as well as the reduced graphene oxides have been measured by single beam Z-scan measurement in the picosecond region. The results reveal both saturable absorption and two-photon absorption, strongly dependent on the intensity of the pump pulse: saturable absorption occurs at lower pump pulse intensity (~1.5 GW/cm2 saturation intensity) whereas two-photon absorption dominates at higher intensities (≥5.7 GW/cm2). Intriguingly, we find that the two-photon absorption coefficient (from 1.5 cm/GW to 4.5cm/GW) and the saturation intensity (from 1 GW/cm2 to 2 GW/cm2) vary with chemical reduction, which is ascribed to the varying concentrations of sp2 domains and sp2 clusters in the reduced graphene oxides. Our results not only provide an insight into the evolution of the nonlinear optical coefficient in reduced graphene oxide, but also suggest that chemical engineering techniques may usefully be applied to tune the nonlinear optical properties of various nano-materials, including atomically thick graphene sheets.

© 2014 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(190.0190) Nonlinear optics : Nonlinear optics
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: May 14, 2014
Revised Manuscript: July 3, 2014
Manuscript Accepted: July 7, 2014
Published: August 4, 2014

Hongfei Shi, Can Wang, Zhipei Sun, Yueliang Zhou, Kuijuan Jin, Simon A. T. Redfern, and Guozhen Yang, "Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction," Opt. Express 22, 19375-19385 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010). [CrossRef]
  2. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008). [CrossRef] [PubMed]
  3. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008). [CrossRef] [PubMed]
  4. M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009). [CrossRef] [PubMed]
  5. Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010). [CrossRef] [PubMed]
  6. Z. P. Sun, D. Popa, T. Hasan, F. Torrisi, F. Q. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010). [CrossRef]
  7. T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009). [CrossRef]
  8. A. Martinez and Z. P. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013). [CrossRef]
  9. Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44(6), 1082–1091 (2012). [CrossRef]
  10. E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010). [CrossRef] [PubMed]
  11. A. Y. Bykov, T. V. Murzina, M. G. Rybin, and E. D. Obraztsova, “Second harmonic generation in multilayer graphene induced by direct electric current,” Phys. Rev. B 85(12), 121413 (2012). [CrossRef]
  12. J. J. Dean and H. M. van Driel, “Graphene and few-layer graphite probed by second-harmonic generation: Theory and experiment,” Phys. Rev. B 82(12), 125411 (2010). [CrossRef]
  13. H. Zhang, S. Virally, Q. L. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37(11), 1856–1858 (2012). [CrossRef] [PubMed]
  14. X. L. Zhang, Z. B. Liu, X. C. Li, Q. Ma, X. D. Chen, J. G. Tian, Y. F. Xu, and Y. S. Chen, “Transient thermal effect, nonlinear refraction and nonlinear absorption properties of graphene oxide sheets in dispersion,” Opt. Express 21(6), 7511–7520 (2013). [CrossRef] [PubMed]
  15. H. X. Chang, Z. H. Sun, Q. H. Yuan, F. Ding, X. M. Tao, F. Yan, and Z. J. Zheng, “Thin film field-effect phototransistors from bandgap-tunable, solution-processed, few-layer reduced graphene oxide films,” Adv. Mater. 22(43), 4872–4876 (2010). [CrossRef] [PubMed]
  16. L. Z. Liu, L. Wang, J. F. Gao, J. J. Zhao, X. F. Gao, and Z. F. Chen, “Amorphous structural models for graphene oxides,” Carbon 50(4), 1690–1698 (2012). [CrossRef]
  17. G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010). [CrossRef] [PubMed]
  18. S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D. H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, “Substrate-induced bandgap opening in epitaxial graphene,” Nat. Mater. 6(10), 770–775 (2007). [CrossRef] [PubMed]
  19. Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009). [CrossRef] [PubMed]
  20. S. F. Pei and H. M. Cheng, “The reduction of graphene oxide,” Carbon 50(9), 3210–3228 (2012). [CrossRef]
  21. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010). [CrossRef] [PubMed]
  22. Z. B. Liu, Y. Wang, X. L. Zhang, Y. F. Xu, Y. S. Chen, and J. G. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94(2), 021902 (2009). [CrossRef]
  23. X. L. Zhang, X. Zhao, Z. B. Liu, S. Shi, W. Y. Zhou, J. G. Tian, Y. F. Xu, and Y. S. Chen, “Nonlinear optical and optical limiting properties of graphene oxide-fe3o4 hybrid material,” J. Opt. 13(7), 075202 (2011). [CrossRef]
  24. C. Gómez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, “Electronic transport properties of individual chemically reduced graphene oxide sheets,” Nano Lett. 7(11), 3499–3503 (2007). [CrossRef] [PubMed]
  25. T. Remyamol, H. John, and P. Gopinath, “Synthesis and nonlinear optical properties of reduced graphene oxide covalently functionalized with polyaniline,” Carbon 59, 308–314 (2013). [CrossRef]
  26. X. F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q. H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012). [CrossRef]
  27. Z.-B. Liu, X. Zhao, X.-L. Zhang, X.-Q. Yan, Y.-P. Wu, Y.-S. Chen, and J.-G. Tian, “Ultrafast dynamics and nonlinear optical responses from sp2- and sp3-hybridized domains in graphene oxide,” J. Phys. Chem. Lett. 2(16), 1972–1977 (2011). [CrossRef]
  28. S. Park, J. H. An, I. W. Jung, R. D. Piner, S. J. An, X. S. Li, A. Velamakanni, and R. S. Ruoff, “Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents,” Nano Lett. 9(4), 1593–1597 (2009). [CrossRef] [PubMed]
  29. F. Bonaccorso, A. Lombardo, T. Hasan, Z. P. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today 15(12), 564–589 (2012). [CrossRef]
  30. F. Bonaccorso and Z. P. Sun, “Solution processing of graphene, topological insulators and other 2d crystals for ultrafast photonics,” Opt. Mater. Express 4(1), 63–78 (2014). [CrossRef]
  31. M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990). [CrossRef]
  32. S. Yumitori, “Correlation of c1s chemical state intensities with the o1s intensity in the xps analysis of anodically oxidized glass-like carbon samples,” J. Mater. Sci. 35(1), 139–146 (2000). [CrossRef]
  33. R. J. Waltman, J. Pacansky, and C. W. Bates, “X-ray photoelectron spectroscopic studies on organic photoconductors evaluation of atomic charges on chlorodiane blue and p(diethylamino)benzaldehyde diphenylhydrazone,” Chem. Mater. 5(12), 1799–1804 (1993). [CrossRef]
  34. A. C. Ferrari and J. Robertson, “Interpretation of raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000). [CrossRef]
  35. Y. Shen, P. Zhou, Q. Q. Sun, L. Wan, J. Li, L. Y. Chen, D. W. Zhang, and X. B. Wang, “Optical investigation of reduced graphene oxide by spectroscopic ellipsometry and the band-gap tuning,” Appl. Phys. Lett. 99(14), 141911 (2011). [CrossRef]
  36. S. Saxena, T. A. Tyson, S. Shukla, E. Negusse, H. Y. Chen, and J. M. Bai, “Investigation of structural and electronic properties of graphene oxide,” Appl. Phys. Lett. 99(1), 013104 (2011). [CrossRef]
  37. V. H. Pham, T. V. Cuong, T. D. Nguyen-Phan, H. D. Pham, E. J. Kim, S. H. Hur, E. W. Shin, S. Kim, and J. S. Chung, “One-step synthesis of superior dispersion of chemically converted graphene in organic solvents,” Chem. Commun. (Camb.) 46(24), 4375–4377 (2010). [CrossRef] [PubMed]
  38. D. I. Kovsh, S. Yang, D. J. Hagan, and E. W. Van Stryland, “Nonlinear optical beam propagation for optical limiting,” Appl. Opt. 38(24), 5168–5180 (1999). [CrossRef] [PubMed]
  39. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996).
  40. J. Robertson and E. P. O’Reilly, “Electronic and atomic structure of amorphous carbon,” Phys. Rev. B Condens. Matter 35(6), 2946–2957 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited