OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19386–19400

Disorder and broad-angle iridescence from Morpho-inspired structures

Bokwang Song, Seok Chan Eom, and Jung H. Shin  »View Author Affiliations


Optics Express, Vol. 22, Issue 16, pp. 19386-19400 (2014)
http://dx.doi.org/10.1364/OE.22.019386


View Full Text Article

Enhanced HTML    Acrobat PDF (1796 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The ordered, lamellae-structured ridges on the wing scales of Morpho butterflies give rise to their striking blue iridescence by multilayer interference and grating diffraction. At the same time, the random offsets among the ridges broaden the directional multilayer reflection peaks and the grating diffraction peaks that the color appears the same at various viewing angles, contrary to the very definition of iridescence. While the overall process is well understood, there has been little investigation into confirming the roles of each factor due to the difficulty of controllably reproducing such complex structures. Here we use a combination of self-assembly, selective etching, and directional deposition to fabricate Morpho-inspired structure with controlled random offsets. We find that while random offsets are necessary, it alone is not sufficient to produce the broad-angle reflection of Morpho butterflies. We identify diffraction as a critical factor for the bright, anisotropic broadening of the reflection peak of Morpho butterflies to a solid angle of 0.23 sr, and suggest random macroscopic surface curvature as a practical alternative, with an isotropic broad reflection peak whose solid angle can reach 0.11 sr at an incident angle of 60 o.

© 2014 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(220.4241) Optical design and fabrication : Nanostructure fabrication
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: May 23, 2014
Revised Manuscript: July 21, 2014
Manuscript Accepted: July 25, 2014
Published: August 4, 2014

Citation
Bokwang Song, Seok Chan Eom, and Jung H. Shin, "Disorder and broad-angle iridescence from Morpho-inspired structures," Opt. Express 22, 19386-19400 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-16-19386


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424(6950), 852–855 (2003). [CrossRef] [PubMed]
  2. M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev.99(7), 1935–1962 (1999). [CrossRef] [PubMed]
  3. L. P. Biró and J. P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon. Rev.5(1), 27–51 (2011). [CrossRef]
  4. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys.71(7), 076401 (2008). [CrossRef]
  5. V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science325(5939), 449–451 (2009). [CrossRef] [PubMed]
  6. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by moth eye principle,” Nature244(5414), 281–282 (1973). [CrossRef]
  7. E. Iwase, K. Matsumoto, and I. Shimoyama, “The structural-color based on the mechanism butterfly wing coloring for wide viewing angle reflective display,” in Proceedings of 17th IEEE international conference on MEMS (Maastricht Exhibition and Convention Centre, Maastricht, 2004), pp. 105–108. [CrossRef]
  8. R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon.1(2), 123–128 (2007). [CrossRef]
  9. A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon.6(3), 195–200 (2012). [CrossRef]
  10. K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films516(20), 7167–7170 (2008). [CrossRef]
  11. S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc. Interface6(Suppl 2), S115–S132 (2009). [CrossRef] [PubMed]
  12. S. Berthier, Iridescences: The Physical Colors of Insects (Springer, 2007).
  13. C. W. Mason, “Structural colors in insects. I,” J. Phys. Chem.30(3), 383–395 (1926). [CrossRef]
  14. C. W. Mason, “Structural colors in insects. II,” J. Phys. Chem.31(3), 321–354 (1927). [CrossRef]
  15. C. W. Mason, “Structural colors in insects. III,” J. Phys. Chem.31(12), 1856–1872 (1927). [CrossRef]
  16. S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem6(8), 1442–1459 (2005). [CrossRef] [PubMed]
  17. Y. Takeoka, “Angle-independent structural coloured amorphous arrays,” J. Mater. Chem.22(44), 23299 (2012). [CrossRef]
  18. S. Berthier, Photonique de Morphos (Springer, 2010).
  19. S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci.269(1499), 1417–1421 (2002). [CrossRef] [PubMed]
  20. H. Ghiradella, “Light and color on the wing: structural colors in butterflies and moths,” Appl. Opt.30(24), 3492–3500 (1991). [CrossRef] [PubMed]
  21. A. Saito, Y. Ishikawa, Y. Miyamura, M. Akai-Kasaya, and Y. Kuwahara, “Optimization of reproduced Morpho-blue coloration,” Proc. SPIE6767, 676706 (2007). [CrossRef]
  22. S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma17, 103–121 (2002).
  23. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999). [CrossRef]
  24. A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotechnology11(4), 2785–2792 (2011). [CrossRef] [PubMed]
  25. J. Boulenguez, S. Berthier, and F. Leroy, “Multiple scaled disorder in the photonic structure of Morpho rhetenor butterfly,” Appl. Phys., A Mater. Sci. Process.106(4), 1005–1011 (2012). [CrossRef]
  26. D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(5), 051924 (2009). [CrossRef] [PubMed]
  27. M. Kambe, D. Zhu, and S. Kinoshita, “Origin of retroreflection from a wing of the Morpho butterfly,” J. Phys. Soc. Jpn.80(5), 054801 (2011). [CrossRef]
  28. S. Yoshioka and S. Kinoshita, “Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly,” Proc. Biol. Sci.273(1583), 129–134 (2006). [CrossRef] [PubMed]
  29. K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B23(2), 570–574 (2005). [CrossRef]
  30. A. Saito, S. Yoshioka, and S. Kinoshita, “Reproduction of the Morpho butterfly's blue: arbitration of contradicting factors,” Proc. SPIE5526, 188–194 (2004). [CrossRef]
  31. R. H. Siddique, S. Diewald, J. Leuthold, and H. Hölscher, “Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies,” Opt. Express21(12), 14351–14361 (2013). [CrossRef] [PubMed]
  32. K. Chung, S. Yu, C. J. Heo, J. W. Shim, S. M. Yang, M. G. Han, H. S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater.24(18), 2375–2379 (2012). [CrossRef] [PubMed]
  33. D. Ge, L. Yang, G. Wu, and S. Yang, “Spray coating of superhydrophobic and angle-independent coloured films,” Chem. Commun.50(19), 2469–2472 (2014). [CrossRef] [PubMed]
  34. L. P. Biró, K. Kertész, E. Horváth, G. I. Márk, G. Molnár, Z. Vértesy, J.-F. Tsai, A. Kun, Zs. Bálint, and J. P. Vigneron, “Bioinspired artificial photonic nanoarchitecture using the elytron of the beetle Trigonophorus rothschildi varians as a ‘blueprint’,” J. R. Soc. Interface7(47), 887–894 (2010). [CrossRef] [PubMed]
  35. I. Tamáska, Z. Vértesy, A. Deák, P. Petrik, K. Kertész, and L. P. Biró, “Optical properties of bioinspired disordered photonic nanoarchitectures,” Nanopages8(2), 17–30 (2013). [CrossRef]
  36. K. Chung and J. H. Shin, “Range and stability of structural colors generated by Morpho-inspired color reflectors,” J. Opt. Soc. Am. A30(5), 962–968 (2013). [CrossRef] [PubMed]
  37. J. B. Schneider, “Understanding the FDTD method” (2010), www.eecs.wsu.edu/~schneidj/ufdtd .
  38. P. Pirih, B. D. Wilts, and D. G. Stavenga, “Spatial reflection patterns of iridescent wings of male pierid butterflies: curved scales reflect at a wider angle than flat scales,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol.197(10), 987–997 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited