OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19401–19410

Excitation of dark plasmonic modes in symmetry broken terahertz metamaterials

Dibakar Roy Chowdhury, Xiaofang Su, Yong Zeng, Xiaoshuang Chen, Antoinette J. Taylor, and Abul Azad  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 19401-19410 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (405 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Plasmonic structures with high symmetry, such as double-identical gap split ring resonators, possess dark eigenmodes. These dark eigenmodes are dominated by magnetic dipole and/or higher-order multi-poles such as electric quadrapoles. Consequently these dark modes interact very weakly with the surrounding environment, and can have very high quality factors (Q). In this work, we have studied, experimentally as well as theoretically, these dark eigenmodes in terahertz metamaterials. Theoretical investigations with the help of classical perturbation theory clearly indicate the existence of these dark modes in symmetric plasmonic metamaterials. However, these dark modes can be excited experimentally by breaking the symmetry within the constituting metamaterial resonators cell, resulting in high quality factor resonance mode. The symmetry broken metamaterials with such high quality factor can pave the way in realizing high sensitivity sensors, in addition to other applications.

© 2014 Optical Society of America

OCIS Codes
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: May 16, 2014
Revised Manuscript: July 14, 2014
Manuscript Accepted: July 16, 2014
Published: August 4, 2014

Dibakar Roy Chowdhury, Xiaofang Su, Yong Zeng, Xiaoshuang Chen, Antoinette J. Taylor, and Abul Azad, "Excitation of dark plasmonic modes in symmetry broken terahertz metamaterials," Opt. Express 22, 19401-19410 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Vaselago, “The electrodynamics of substances with simultaneously negative values of epsilon and mu,” Sov. Phys. Usp.10, 509–514 (1968). [CrossRef]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech.47, 2075–2084 (1999). [CrossRef]
  3. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 Terahertz,” Science306, 1351–1353 (2004). [CrossRef] [PubMed]
  4. O. Sydoruk, E. Tarartschuk, E. Shamonina, and L. Solymar, “Analytical formulation for the resonant frequency of split rings,” J. Appl. Phys.105, 014903 (2009). [CrossRef]
  5. R. Singh, C. Rocksuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B.79, 085111 (2008). [CrossRef]
  6. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz meta-material devices,” Nature444, 597–600 (2006). [CrossRef] [PubMed]
  7. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184 (2000). [CrossRef] [PubMed]
  8. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative refraction of refraction,” Science292, 77–79 (2001). [CrossRef] [PubMed]
  9. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science315, 47–49 (2007). [CrossRef] [PubMed]
  10. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966 (2000). [CrossRef] [PubMed]
  11. A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett.92, 117403 (2004). [CrossRef] [PubMed]
  12. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. smith, “Broadband ground-plane cloak,” Science323, 366–369 (2006). [CrossRef]
  13. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett.84, 2943 (2004). [CrossRef]
  14. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuehl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express14, 8827–8836 (2006). [CrossRef] [PubMed]
  15. D. R. Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterials through photo doped semiconductors,” Appl. Phys. Lett.99, 231101 (2011). [CrossRef]
  16. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for terahertz regime: Design fabrication and characterization,” Opt. Express16, 7181–7188 (2008). [CrossRef] [PubMed]
  17. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16, 1786–1795 (2008). [CrossRef] [PubMed]
  18. I. A. I. Naib, C. Jansen, and M. Koch, “Thin film sensing with planar asymetric metamaterial resonators,” Appl. Phys. Lett.93, 083507 (2008). [CrossRef]
  19. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4, 795–808 (2010). [CrossRef]
  20. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a brocken structural symmetry,” Phys. Rev. Lett.99, 147401 (2007). [CrossRef]
  21. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett.94, 131901 (2009). [CrossRef]
  22. I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phy. Lett.101, 071108 (2012). [CrossRef]
  23. R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phy. Lett.99, 201107 (2011). [CrossRef]
  24. W. Cao, R. Singh, I. A. I. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett.37, 3366–3368 (2012). [CrossRef]
  25. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymetric metamaterials for ultrasensitive spectroscopy and identification of moleculer monolayers,” Nat. Mat.11, 69–75 (2012). [CrossRef]
  26. D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett.11, 2104–2108 (2011). [CrossRef] [PubMed]
  27. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with tera-hertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B7, 2006–2015 (1990). [CrossRef]
  28. R. D. Averitt and A. J. Taylor, “Ultrafast optical and far infra-red quasiparticle dynamics in correlated electron materials,” J. Phys.: Cond. Matter.14, R1357 (2002).
  29. Y. Zeng, D. A. R. Dalvit, J. O’Hara, and S. A. Trugman, “A modal analysis method to describe weak nonlinear effects in metamaterials,” Phys. Rev. B85, 125107 (2012). [CrossRef]
  30. A. Raman and S. Fan, “Photonic band structure of dispersive meta-materials formulated as a Hermitian eigenvalue problem,” Phys. Rev. Lett.104, 087401 (2010). [CrossRef]
  31. R. Cole, Theory of Ordinary Differential Equations (Appleton-Century-Crofts, New York, 1968).
  32. M. Naimark, Linear Differential Operators, Part 1, W. Everitt, ed. (Ungar, New York, 1968).
  33. D. E. Gomez, Z. Q. Teo, M. Altissimo, T. J. Davis, S. Earl, and A. Roberts, “The drak side of plasmonics,” Nano Lett.13, 3722–3728 (2013). [CrossRef]
  34. Y. Zeng, Y. Fu, M. Bengtsson, X. S. Chen, W. Lu, and H. Ågren, “Finite-difference time-domain simulations of exciton-polariton resonances in quantum-dot arrays,” Opt. Express16, 4507–4519 (2008). [CrossRef] [PubMed]
  35. M. T. Reiten, D. Roy Chowdhury, J. Zhou, A. J. Taylor, J. O’Hara, and A. K. Azad, “Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials,” Appl. Phys. Lett.98, 131105 (2011). [CrossRef]
  36. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mat.9, 707–715 (2010). [CrossRef]
  37. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82, 2257 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited