OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19440–19447

Unidirectional invisibility in a two-layer non-PT-symmetric slab

Yun Shen, Xiao Hua Deng, and Lin Chen  »View Author Affiliations


Optics Express, Vol. 22, Issue 16, pp. 19440-19447 (2014)
http://dx.doi.org/10.1364/OE.22.019440


View Full Text Article

Enhanced HTML    Acrobat PDF (568 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently, unidirectional invisibility has been demonstrated in parity-time (PT) symmetric periodic structures and has attracted great attention. Nevertheless, fabrication of a complex periodic structure may not be practically easy. In this paper, a simple two-layer non-PT-symmetric slab structure is proposed to realize unidirectional invisibility. We numerically show that in such conventional structure consisting of two slabs with different real parts of refractive indices, unidirectional invisibility can be achieved as proper imaginary parts of refractive indices and thicknesses of the slabs are satisfied. Moreover, the unidirectional invisibility can be converted to unidirectional reflection when the imaginary parts of the refractive indices are tuned to their odd symmetric forms.

© 2014 Optical Society of America

OCIS Codes
(230.7400) Optical devices : Waveguides, slab
(310.6860) Thin films : Thin films, optical properties
(290.5839) Scattering : Scattering, invisibility

ToC Category:
Thin Films

History
Original Manuscript: April 29, 2014
Revised Manuscript: July 16, 2014
Manuscript Accepted: July 17, 2014
Published: August 4, 2014

Citation
Yun Shen, Xiao Hua Deng, and Lin Chen, "Unidirectional invisibility in a two-layer non-PT-symmetric slab," Opt. Express 22, 19440-19447 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-16-19440


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Longhi and G. Della Valle, “Photonic realization of PT-symmetric quantum field theories,” Phys. Rev. A85(1), 012112 (2012). [CrossRef]
  2. C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett.80(24), 5243–5246 (1998). [CrossRef]
  3. C. M. Bender, “Making sense of non-Hermitian Hamiltonians,” Rep. Prog. Phys.70(6), 947–1018 (2007). [CrossRef]
  4. N. Hatano and D. R. Nelson, “Localization transitions in non-Hermitian quantum mechanics,” Phys. Rev. Lett.77(3), 570–573 (1996). [CrossRef] [PubMed]
  5. O. Bendix, R. Fleischmann, T. Kottos, and B. Shapiro, “Exponentially fragile PT symmetry in lattices with localized eigenmodes,” Phys. Rev. Lett.103(3), 030402 (2009). [CrossRef] [PubMed]
  6. M. Hiller, T. Kottos, and A. Ossipov, “Bifurcations in resonance widths of an open Bose-Hubbard dimer,” Phys. Rev. A73(6), 063625 (2006). [CrossRef]
  7. R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett.32(17), 2632–2634 (2007). [CrossRef] [PubMed]
  8. S. Longhi, “Bloch oscillations in complex crystals with PT symmetry,” Phys. Rev. Lett.103(12), 123601 (2009). [CrossRef] [PubMed]
  9. O. Bendix, R. Fleischmann, T. Kottos, and B. Shapiro, “Optical structures with local PT-symmetry,” J. Phys. A43(26), 265305 (2010). [CrossRef]
  10. K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett.100(10), 103904 (2008). [CrossRef] [PubMed]
  11. M. C. Zheng, D. N. Christodoulides, R. Fleischmann, and T. Kottos, “PT optical lattices and universality in beam dynamics,” Phys. Rev. A82(1), 010103 (2010). [CrossRef]
  12. A. Guo, G. J. Salamo, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-symmetry breaking in complex optical potentials,” Phys. Rev. Lett.103(9), 093902 (2009). [CrossRef] [PubMed]
  13. S. Longhi, “PT-symmetric laser absorber,” Phys. Rev. A82(3), 031801 (2010). [CrossRef]
  14. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett.106(21), 213901 (2011). [CrossRef] [PubMed]
  15. L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater.12(2), 108–113 (2012). [CrossRef] [PubMed]
  16. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett.24(11), 711–713 (1999). [CrossRef] [PubMed]
  17. Y. Shen and G. P. Wang, “Gain-assisted time delay of plasmons in coupled metal ring resonator waveguides,” Opt. Express17(15), 12807–12812 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-15-12807 . [CrossRef] [PubMed]
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  19. C. C. Baker, J. Heikenfeld, Z. Yu, and A. J. Steckl, “Optical amplification and electroluminescence at 1.54 μm in Er-doped zinc silicate germanate on silicon,” Appl. Phys. Lett.84(9), 1462–1464 (2004). [CrossRef]
  20. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag.AP-14, 302–307 (1966).
  21. Y. Shen and G. P. Wang, “Optical bistability in metal gap waveguide nanocavities,” Opt. Express16(12), 8421–8426 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-12-8421 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited