OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19448–19456

An improved low-optical-power variable focus lens with a large aperture

Lihui Wang, Hiromasa Oku, and Masatoshi Ishikawa  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 19448-19456 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2252 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report an improved method of fabricating a variable focus lens in which an in-plane pretension force is applied to a membrane. This method realized a lens with a large optical aperture and high performance in a low-optical-power region. The method was verified by comparing membranes in a simulation using the finite element method. A prototype with a 26 mm-diameter aperture was fabricated, and the wavefront behavior was measured by using a Shack-Hartmann sensor. Thanks to the in-plane pretension force, the lens achieved an infinite focal length with a wavefront error of 105.1 nm root mean square.

© 2014 Optical Society of America

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(080.3620) Geometric optics : Lens system design
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Optical Devices

Original Manuscript: June 26, 2014
Revised Manuscript: July 27, 2014
Manuscript Accepted: July 27, 2014
Published: August 5, 2014

Virtual Issues
Vol. 9, Iss. 10 Virtual Journal for Biomedical Optics

Lihui Wang, Hiromasa Oku, and Masatoshi Ishikawa, "An improved low-optical-power variable focus lens with a large aperture," Opt. Express 22, 19448-19456 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (John Wiley & Sons, 2012).
  2. D. Graham-Rowe, “Liquid lenses make a splash,” Nat. Photonics2–4 (2006).
  3. X. Zeng and H. Jiang, “Liquid tunable microlenses based on MEMS techniques,” J. Phys. D Appl. Phys. 46(32), 323001 (2013). [CrossRef] [PubMed]
  4. D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171 (2003). [CrossRef]
  5. H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1-kHz bandwidth,” Opt. Express 12(10), 2138–2149 (2004). [CrossRef] [PubMed]
  6. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006). [CrossRef] [PubMed]
  7. N. Sugiura and S. Morita, “Variable-focus liquid-filled optical lens,” Appl. Opt. 32(22), 4181–4186 (1993). [CrossRef] [PubMed]
  8. H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94(22), 221108 (2009). [CrossRef]
  9. S. Xu, Y. Liu, H. Ren, and S.-T. Wu, “A novel adaptive mechanical-wetting lens for visible and near infrared imaging,” Opt. Express 18(12), 12430–12435 (2010). [CrossRef] [PubMed]
  10. L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013). [CrossRef]
  11. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000). [CrossRef]
  12. C.-C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007). [CrossRef] [PubMed]
  13. S. Xu, H. Ren, and S.-T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013). [CrossRef]
  14. S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979). [CrossRef]
  15. P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19(19), 18584–18592 (2011). [CrossRef] [PubMed]
  16. C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15525–15531 (2011). [CrossRef] [PubMed]
  17. Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013). [CrossRef] [PubMed]
  18. H. Oku and M. Ishikawa, “High-speed liquid lens for computer vision,” in 2010 IEEE Int. Conf. Robot. Autom., (IEEE, 2010). [CrossRef]
  19. M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012). [CrossRef] [PubMed]
  20. H. Ren and S.-T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005). [CrossRef]
  21. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128 (2004). [CrossRef]
  22. M. Sheploak and J. Dugundji, “Large Deflections of Clamped Circular Plates Under Initial Tension and Transitions to Membrane Behavior,” J. Appl. Mech. 65(1), 107 (1998). [CrossRef]
  23. F. Zhao, “Nonlinear solutions for circular membranes and thin plates,” in SPIE Proc. 6926, (2008).
  24. C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011). [CrossRef] [PubMed]
  25. V. N. Mahajan, “Strehl ratio for primary aberrations: some analytical results for circular and annular pupils,” J. Opt. Soc. Am. 72(9), 1258 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited