OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19457–19468

Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers

Serkan Butun and Koray Aydin  »View Author Affiliations


Optics Express, Vol. 22, Issue 16, pp. 19457-19468 (2014)
http://dx.doi.org/10.1364/OE.22.019457


View Full Text Article

Enhanced HTML    Acrobat PDF (2904 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Light absorption is a fundamental optical process playing significantly important role in wide variety of applications ranging from photovoltaics to photothermal therapy. Semiconductors have well-defined absorption bands with low-energy edge dictated by the band gap energy, therefore it is rather challenging to tune the absorption bandwidth of semiconductors. However, resonant absorbers based on plasmonic nanostructures and optical metamaterials emerged as alternative light absorbers due to spectrally selective absorption bands resulting from optical resonances. Recently, a broadband plasmonic absorber design was introduced by Aydin et al. with a reasonably high broadband absorption. Based on that design, here, structurally tunable, broadband absorbers with improved performance are demonstrated. This broadband absorber has a total thickness of 190 nm with 80% average measured absorption (90% simulated absorption) over the entire visible spectrum (400 - 700 nm). Moreover, the effect of the metal and the oxide thicknesses on the absorption spectra are investigated and results indicate that the shorter and the longer band-edge of broadband absorption can be structurally tuned with the metal and the oxide thicknesses, as well as with the resonator size. Detailed numerical simulations shed light on the type of optical resonances that contribute to the broadband absorption response and provide a design guideline for realizing plasmonic absorbers with structurally tunable bandwidths.

© 2014 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Plasmonics

History
Original Manuscript: June 11, 2014
Revised Manuscript: July 25, 2014
Manuscript Accepted: July 25, 2014
Published: August 5, 2014

Citation
Serkan Butun and Koray Aydin, "Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers," Opt. Express 22, 19457-19468 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-16-19457


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  2. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater.22(43), 4794–4808 (2010). [CrossRef] [PubMed]
  3. Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier,” Adv. Mater.25(17), 2385–2396 (2013). [CrossRef] [PubMed]
  4. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011). [CrossRef]
  5. M. E. Solano, M. Faryad, P. B. Monk, T. E. Mallouk, and A. Lakhtakia, “Periodically multilayered planar optical concentrator for photovoltaic solar cells,” Appl. Phys. Lett.103(19), 191115 (2013). [CrossRef]
  6. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  7. N. A. Cinel, S. Bütün, G. Ertaş, and E. Özbay, “SERS:‘fairy chimney’‐shaped tandem metamaterials as double resonance SERS Substrates,” Small9(4), 489 (2013). [CrossRef]
  8. R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat Commun4, 2154 (2013). [CrossRef] [PubMed]
  9. A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108(29), 11784–11789 (2011). [CrossRef] [PubMed]
  10. F. Yi, H. Zhu, J. C. Reed, and E. Cubukcu, “Plasmonically enhanced thermomechanical detection of infrared radiation,” Nano Lett.13(4), 1638–1643 (2013). [PubMed]
  11. Z. Liu, E. Li, V. M. Shalaev, and A. V. Kildishev, “Near field enhancement in silver nanoantenna-superlens systems,” Appl. Phys. Lett.101(2), 021109 (2012). [CrossRef]
  12. H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L. Shen, S. A. Maier, and J. Teng, “High Aspect Subdiffraction-limit photolithography via a silver superlens,” Nano Lett.12(3), 1549–1554 (2012). [CrossRef] [PubMed]
  13. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005). [CrossRef] [PubMed]
  14. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010). [CrossRef] [PubMed]
  15. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science316(5823), 430–432 (2007). [CrossRef] [PubMed]
  16. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B79(4), 045131 (2009). [CrossRef]
  17. S. Dai, D. Zhao, Q. Li, and M. Qiu, “Double-sided polarization-independent plasmonic absorber at near-infrared region,” Opt. Express21(11), 13125–13133 (2013). [CrossRef] [PubMed]
  18. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008). [CrossRef] [PubMed]
  19. T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008). [CrossRef]
  20. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett.34(5), 686–688 (2009). [CrossRef] [PubMed]
  21. C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H.-B.-R. Lee, M. L. Brongersma, and S. F. Bent, “Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption,” Nano Lett.13(7), 3352–3357 (2013). [CrossRef] [PubMed]
  22. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010). [CrossRef]
  23. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008). [CrossRef] [PubMed]
  24. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett.10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  25. H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett.108(18), 186805 (2012). [CrossRef] [PubMed]
  26. R. Adato, A. Artar, S. Erramilli, and H. Altug, “Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems,” Nano Lett.13(6), 2584–2591 (2013). [CrossRef] [PubMed]
  27. S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc. Chem. Res.41(12), 1842–1851 (2008). [CrossRef] [PubMed]
  28. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging And Photothermal Cancer Therapy,” Nano Lett.7(7), 1929–1934 (2007). [CrossRef] [PubMed]
  29. Y. Ma, X. Liang, S. Tong, G. Bao, Q. Ren, and Z. Dai, “Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy,” Adv. Funct. Mater.23(7), 815–822 (2013). [CrossRef]
  30. J. F. Hainfeld, M. J. O’Connor, P. Lin, L. Qian, D. N. Slatkin, and H. M. Smilowitz, “Infrared-transparent gold nanoparticles converted by tumors to infrared absorbers cure tumors in mice by photothermal therapy,” PLoS ONE9(2), e88414 (2014). [CrossRef] [PubMed]
  31. C. H. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt.14(2), 024005 (2012). [CrossRef]
  32. C. Simovski, S. Maslovski, I. Nefedov, and S. Tretyakov, “Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications,” Opt. Express21(12), 14988–15013 (2013). [CrossRef] [PubMed]
  33. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express21(S1Suppl 1), A96–A110 (2013). [CrossRef] [PubMed]
  34. N. Mohammadi Estakhri and A. Alù, “Minimum-scattering superabsorbers,” Phys. Rev. B89(12), 121416 (2014). [CrossRef]
  35. C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B87(20), 205112 (2013). [CrossRef]
  36. A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal,” ACS Nano7(6), 4995–5007 (2013). [CrossRef] [PubMed]
  37. E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95(4), 041106 (2009). [CrossRef]
  38. A. C. Atre, A. García-Etxarri, H. Alaeian, and J. A. Dionne, “A broadband negative index metamaterial at optical frequencies,” Advanced Optical Materials1(4), 327–333 (2013). [CrossRef]
  39. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun2, 517 (2011). [CrossRef] [PubMed]
  40. Lumerical Solutions, Inc.”, retrieved http://www.lumerical.com/tcad-products/fdtd/ .
  41. Y. B. Zheng, B. K. Juluri, X. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys.103, 014308 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited