OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19469–19483

Attenuation-corrected fluorescence spectra unmixing for spectroscopy and microscopy

Hayato Ikoma, Barmak Heshmat, Gordon Wetzstein, and Ramesh Raskar  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 19469-19483 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (5100 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In fluorescence measurements, light is often absorbed and scattered by a sample both for excitation and emission, resulting in the measured spectra to be distorted. Conventional linear unmixing methods computationally separate overlapping spectra but do not account for these effects. We propose a new algorithm for fluorescence unmixing that accounts for the attenuation-related distortion effect on fluorescence spectra. Using a matrix representation, we derive forward measurement formation and a corresponding inverse method; the unmixing algorithm is based on nonnegative matrix factorization. We also demonstrate how this method can be extended to a higher-dimensional tensor form, which is useful for unmixing overlapping spectra observed under the attenuation effect in spectral imaging microscopy. We evaluate the proposed methods in simulation and experiments and show that it outperforms a conventional, linear unmixing method when absorption and scattering contributes to the measured signals, as in deep tissue imaging.

© 2014 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(110.0180) Imaging systems : Microscopy
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(300.1030) Spectroscopy : Absorption
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:

Original Manuscript: June 9, 2014
Revised Manuscript: July 24, 2014
Manuscript Accepted: July 25, 2014
Published: August 5, 2014

Virtual Issues
Vol. 9, Iss. 10 Virtual Journal for Biomedical Optics

Hayato Ikoma, Barmak Heshmat, Gordon Wetzstein, and Ramesh Raskar, "Attenuation-corrected fluorescence spectra unmixing for spectroscopy and microscopy," Opt. Express 22, 19469-19483 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Zhang, S. Liu, J. Yang, M. Song, J. Song, H. Du, and Z. Chen, “Quantitative spectroscopic analysis of heterogeneous systems: chemometric methods for the correction of multiplicative light scattering effects,” Rev. Anal. Chem 32, 113–125 (2013). [CrossRef]
  2. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008). [CrossRef] [PubMed]
  3. Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: Principles and applications,” Cytometry A 69A, 735–747 (2006). [CrossRef]
  4. T. Zimmermann, J. Marrison, K. Hogg, and P. O’Toole, “Clearing up the signal: Spectral imaging and linear unmixing in fluorescence microscopy,” Methods Mol. Biol. 1075, 129–148 (2014). [CrossRef]
  5. T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, and R. Pepperkok, “Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair,” FEBS lett. 531, 245–249 (2002). [CrossRef] [PubMed]
  6. E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996). [CrossRef] [PubMed]
  7. J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature 450, 56–62 (2007). [CrossRef] [PubMed]
  8. A. M. Valm, J. L. M. Welch, C. W. Rieken, Y. Hasegawa, M. L. Sogin, R. Oldenbourg, F. E. Dewhirst, and G. G. Borisy, “Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 108, 4152–4157 (2011). [CrossRef] [PubMed]
  9. R. A. Neher, M. Mitkovski, F. Kirchhoff, E. Neher, F. J. Theis, and A. Zeug, “Blind source separation techniques for the decomposition of multiply labeled fluorescence images,” Biophys. J. 96, 3791–3800 (2009). [CrossRef] [PubMed]
  10. K. R. Murphy, C. A. Stedmon, D. Graeber, and R. Bro, “Fluorescence spectroscopy and multi-way techniques. PARAFAC,” Anal. Methods 5, 6557–6566 (2013). [CrossRef]
  11. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2007).
  12. R. S. Bradley and M. S. Thorniley, “A review of attenuation correction techniques for tissue fluorescence,” J. R. Soc. Interface 3, 1–13 (2006). [CrossRef] [PubMed]
  13. M. Ducros, L. Moreaux, J. Bradley, P. Tiret, O. Griesbeck, and S. Charpak, “Spectral unmixing: analysis of performance in the olfactory bulb in vivo,” PloS ONE 4, e4418 (2009). [CrossRef] [PubMed]
  14. X. Luciani, S. Mounier, R. Redon, and A. Bois, “A simple correction method of inner filter effects affecting FEEM and its application to the PARAFAC decomposition,” Chemometr. Intell. Lab. 96, 227–238 (2009). [CrossRef]
  15. J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2006). [CrossRef]
  16. S. Henrot, C. Soussen, M. Dossot, and D. Brie, “Does deblurring improve geometrical hyperspectral unmixing?” IEEE Trans. Image Process. 23, 1169–1180 (2014). [CrossRef] [PubMed]
  17. M. G. Müller, I. Georgakoudi, Q. Zhang, J. Wu, and M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt. 40, 4633–4646 (2001). [CrossRef]
  18. T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM Rev. 51, 455–500 (2009). [CrossRef]
  19. H. Shirakawa and S. Miyazaki, “Blind spectral decomposition of single-cell fluorescence by parallel factor analysis,” Biophys. J. 86, 1739–1752 (2004). [CrossRef] [PubMed]
  20. B. W. Bader and T. G. Kolda, “Matlab tensor toolbox version 2.5,” available at http://www.sandia.gov/tgkolda/TensorToolbox/ (2012).
  21. B. W. Bader and T. G. Kolda, “Algorithm 862: MATLAB tensor classes for fast algorithm prototyping,” ACM Trans. Math. Software 32, 635–653 (2006). [CrossRef]
  22. R. M. Zucker, P. Rigby, I. Clements, W. Salmon, and M. Chua, “Reliability of confocal microscopy spectral imaging systems: Use of multispectral beads,” Cytometry Part A 71A, 174–189 (2007). [CrossRef]
  23. S. Schlachter, S. Schwedler, A. Esposito, G. S. Kaminski Schierle, G. D. Moggridge, and C. F. Kaminski, “A method to unmix multiple fluorophores in microscopy images with minimal a priori information,” Opt. Express 17, 22747–22760 (2009). [CrossRef]
  24. I. Urbančič, Z. Arsov, A. Ljubetič, D. Biglino, and J. Štrancar, “Bleaching-corrected fluorescence microspectroscopy with nanometer peak position resolution,” Opt. Express 21, 25291–25306 (2013). [CrossRef]
  25. D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature 401, 788–791 (1999). [CrossRef] [PubMed]
  26. G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graphics 31, 80 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited