OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19504–19512

Validation of electromagnetic field enhancement in near-infrared through Sierpinski fractal nanoantennas

Semih Cakmakyapan, Neval A. Cinel, Atilla Ozgur Cakmak, and Ekmel Ozbay  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 19504-19512 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3638 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduced fractal geometry to the conventional bowtie antennas. We experimentally and numerically showed that the resonance of the bowtie antennas goes to longer wavelengths, after each fractalization step, which is considered a tool to miniaturize the main bowtie structure. We also showed that the fractal geometry provides multiple hot spots on the surface, and it can be used as an efficient SERS substrate.

© 2014 Optical Society of America

OCIS Codes
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:

Original Manuscript: June 2, 2014
Revised Manuscript: July 24, 2014
Manuscript Accepted: July 26, 2014
Published: August 5, 2014

Semih Cakmakyapan, Neval A. Cinel, Atilla Ozgur Cakmak, and Ekmel Ozbay, "Validation of electromagnetic field enhancement in near-infrared through Sierpinski fractal nanoantennas," Opt. Express 22, 19504-19512 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009). [CrossRef]
  2. B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012). [CrossRef] [PubMed]
  3. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005). [CrossRef] [PubMed]
  4. L. Wang and X. F. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007). [CrossRef]
  5. N. K. Emani, T. F. Chung, X. J. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012). [CrossRef] [PubMed]
  6. N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010). [CrossRef] [PubMed]
  7. D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006). [CrossRef] [PubMed]
  8. K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-From single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006). [CrossRef] [PubMed]
  9. H. Kneipp, J. Kneipp, and K. Kneipp, “Surface-enhanced Raman optical activity on adenine in silver colloidal solution,” Anal. Chem. 78(4), 1363–1366 (2006). [CrossRef] [PubMed]
  10. C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005). [CrossRef]
  11. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985). [CrossRef]
  12. M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sensor Actuat. Biol. Chem. 51, 285–291 (1998).
  13. N. Guillot, H. Shen, B. Fremaux, O. Peron, E. Rinnert, T. Toury, and M. L. de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett. 97(2), 023113 (2010). [CrossRef]
  14. N. A. Cinel, S. Cakmakyapan, G. Ertas, and E. Ozbay, “Concentric ring structures as efficient SERS substrates,” IEEE JSTQE 19, 4601605 (2013).
  15. N. A. Cinel, S. Bütün, G. Ertaş, and E. Ozbay, “‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9(4), 531–537 (2013). [CrossRef] [PubMed]
  16. A. R. M. D. H. Werner, Frontiers in Electromagnetics (Wiley, 1999).
  17. B. B. Mandelbrot and A. Blumen, “Fractal geometry - what is it, and what does it do,” P. Roy. Soc. Lond. A. Mat. 423(1864), 3–16 (1989). [CrossRef]
  18. J. H. Zhu, A. Hoorfar, and N. Engheta, “Bandwidth, cross-polarization, and feed-point characteristics of matched Hilbert antennas,” IEEE Antenna Wireless Proceedings 2(1), 2–5 (2003). [CrossRef]
  19. V. Crnojevic-Bengin, V. Radonic, and B. Jokanovic, “Fractal geometries of complementary split-ring resonators,” IEEE T. Microwave Theory 56(10), 2312–2321 (2008). [CrossRef]
  20. D. H. Werner and S. Ganguly, “An overview of fractal antenna engineering research,” IEEE Antennas Propag. 45(1), 38–57 (2003). [CrossRef]
  21. G. Volpe, G. Volpe, and R. Quidant, “Fractal plasmonics: subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet,” Opt. Express 19(4), 3612–3618 (2011). [CrossRef] [PubMed]
  22. S. Sederberg and A. Y. Elezzabi, “Sierpiński fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna,” Opt. Express 19(11), 10456–10461 (2011). [CrossRef] [PubMed]
  23. S. Sederberg and A. Y. Elezzabi, “The influence of Hausdorff dimension on plasmonic antennas with Pascal's triangle geometry,” Appl. Phys. Lett. 98(26), 261105 (2011). [CrossRef]
  24. P. Maraghechi and A. Y. Elezzabi, “Enhanced THz radiation emission from plasmonic complementary Sierpinski fractal emitters,” Opt. Express 18(26), 27336–27345 (2010). [CrossRef] [PubMed]
  25. L. Rosa, K. Sun, and S. Juodkazis, “Sierpinski fractal plasmonic nanoantennas,” Phys. Status Solidi-R 5(5-6), 175–177 (2011). [CrossRef]
  26. A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Phys-Usp 56(6), 539–564 (2013). [CrossRef]
  27. J. S. Dahele and K. F. Lee, “On the resonant frequencies of the triangular patch antenna,” IEEE Trans. Antenn. Propag. 35(1), 100–101 (1987). [CrossRef]
  28. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007). [CrossRef] [PubMed]
  29. J. Anguera, C. Puente, C. Borja, R. Montero, and J. Soler, “Small and high-directivity bow-tie patch antenna based on the Sierpinski fractal,” Microw. Opt. Technol. Lett. 31(3), 239–241 (2001). [CrossRef]
  30. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008). [CrossRef] [PubMed]
  31. E. J. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15(12), 7439–7447 (2007). [CrossRef] [PubMed]
  32. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]
  33. N. Berkovitch and M. Orenstein, “Thin wire shortening of plasmonic nanoparticle dimers: The reason for red shifts,” Nano Lett. 11(5), 2079–2082 (2011). [CrossRef] [PubMed]
  34. K. D. Alexander, K. Skinner, S. P. Zhang, H. Wei, and R. Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate,” Nano Lett. 10(11), 4488–4493 (2010). [CrossRef] [PubMed]
  35. S. J. Lee, A. R. Morrill, and M. Moskovits, “Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 128(7), 2200–2201 (2006). [CrossRef] [PubMed]
  36. S. M. Asiala and Z. D. Schultz, “Characterization of hotspots in a highly enhancing SERS substrate,” Analyst (Lond.) 136(21), 4472–4479 (2011). [CrossRef] [PubMed]
  37. K. H. Hsu, J. H. Back, K. H. Fung, P. M. Ferreira, M. Shim, and N. X. Fang, “SERS EM field enhancement study through fast Raman mapping of Sierpinski carpet arrays,” J. Raman Spectroscopy 41(10), 1124–1130 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited