OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19538–19545

Multifractal characteristics of optical turbulence measured through a single beam holographic process

Darío G. Pérez, Regis Barillé, Yohann Morille, Sonia Zielińska, and Ewelina Ortyl  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 19538-19545 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2956 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have previously shown that azopolymer thin films exposed to coherent light that has travelled through a turbulent medium produces a surface relief grating containing information about the intensity of the turbulence; for instance, a relation between the refractive index structure constant C n 2 as a function of the surface parameters was obtained. In this work, we show that these films capture much more information about the turbulence dynamics. Multifractal detrended fluctuation and fractal dimension analysis from images of the surface roughness produced by the light on the azopolymer reveals scaling properties related to those of the optical turbulence.

© 2014 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(050.1950) Diffraction and gratings : Diffraction gratings
(090.2890) Holography : Holographic optical elements
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.4991) Remote sensing and sensors : Passive remote sensing

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: May 12, 2014
Revised Manuscript: July 25, 2014
Manuscript Accepted: July 28, 2014
Published: August 5, 2014

Darío G. Pérez, Regis Barillé, Yohann Morille, Sonia Zielińska, and Ewelina Ortyl, "Multifractal characteristics of optical turbulence measured through a single beam holographic process," Opt. Express 22, 19538-19545 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. G. Buser, “Interferometric determination of the distance dependence of the phase structure function for near-ground horizontal propagation at 6328 Å,” J. Opt. Soc. Am. 61, 488–491 (1971). [CrossRef]
  2. Y. Jiang, J. Ma, L. Tan, S. Yu, and W. Du, “Measurement of optical intensity fluctuation over an 118 km turbulent path,” Opt. Express 16, 6963–6973 (2008). [CrossRef] [PubMed]
  3. A. Berdja, “On the DIMM interpretation of non-Kolmogorov turbulence in the atmospheric surface layer,” Mon. Not. R. Astron. Soc. 409, 722–726 (2010). [CrossRef]
  4. D. G. Pérez and L. Zunino, “Generalized wave-front phase for non-Kolmogorov turbulence,” Opt. Lett. 33, 572–574 (2008). [CrossRef]
  5. F. Schmitt, D. Schertzer, S. Lovejoy, and Y. Brunet, “Multifractal temperature and fux of temperature variance in fully developed turbulence,” Europhys. Lett. 34, 195–200 (1996). [CrossRef]
  6. R. R. Prasad and K. R. Sreenivasan, “Quantitative three-dimensional imaging and the structure of passive scalar fields in fully turbulent flows,” J. Fluid Mech. 216, 1–34 (2006). [CrossRef]
  7. R. Rao, “Statistics of the fractal structure and phase singularity of a plane light wave propagation in atmospheric turbulence,” Appl. Opt. 47, 269–276 (2008). [CrossRef] [PubMed]
  8. G. Funes, E. Figueroa, D. Gulich, L. Zunino, and D. G. Pérez, “Characterizing inertial and convective optical turbulence by detrended fluctuation analysis,” Proc. SPIE 8890, 889016 (2013). [CrossRef]
  9. J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, A. Bunde, S. Havlin, and H. E. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A 316, 87–114 (2002). [CrossRef]
  10. G.-F. Gu and W.-X. Zhou, “Detrended fluctuation analysis for fractals and multifractals in higher dimensions,” Phys. Rev. E 74, 061104 (2006). [CrossRef]
  11. R. Barillé, D. G. Pérez, Y. Morille, S. Zielińska, and E. Ortyl, “Simple turbulence measurements with azopolymer thin films,” Opt. Lett. 38, 1128–1130 (2013). [CrossRef] [PubMed]
  12. S. A. Kandjani, R. Barille, S. Dabos-Seignon, J.-M. Nunzi, E. Ortyl, and S. Kucharski, “Multistate polarization addressing using a single beam in an azo polymer film,” Opt. Lett. 30, 1986–1988 (2005). [CrossRef] [PubMed]
  13. E. Ortyl and S. Kucharski, “Refractive index modulation in polymeric photochromic films,” Cent. Eur. J. Chem. 1, 137–159 (2003). [CrossRef]
  14. A. Consortini, Y. Y. Sun, C. Innocenti, and Z. P. Li, “Measuring inner scale of atmospheric turbulence by angle of arrival and scintillation,” Opt. Commun. 216, 19–23 (2003). [CrossRef]
  15. K. J. Falconer, Fractal Geometry: Mathematical Theory and Applications (John Wiley, 1990).
  16. A. N. D. Posadas, D. Giménez, R. Quiroz, and R. Protz, “Multifractal characterization of soil pore systems,” Soil Sci. Soc. Am. J. 67, 1361–1369 (2003). [CrossRef]
  17. R. Barille and P. LaPenna, “Multifractality of laser beam spatial intensity in a turbulent medium,” Appl. Opt. 45, 3331–3339 (2006). [CrossRef] [PubMed]
  18. L. Zunino, M. C. Soriano, A. Figliola, D. G. Pérez, M. Garavaglia, C. R. Mirasso, and O. A. Rosso, “Performance of encryption schemes in chaotic optical communication: A multifractal approach,” Opt. Commun. 282, 4587–4594 (2009). [CrossRef]
  19. E. A. F. Ihlen, “Introduction to multifractal detrended fluctuation analysis in matlab,” Front. Physiol. 3, 141 (2012). [CrossRef] [PubMed]
  20. A. Arneodo, E. Bacry, and J. Muzy, “The thermodynamics of fractals revisited with wavelets,” Physica A 213, 232–275 (1995). [CrossRef]
  21. To change from iso-curves fractal dimension to graph dimension a 1 should be added to the former to obtain the latter [15].

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited