OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19546–19554

Three-dimensional (3D) monolithically integrated photodetector and WDM receiver based on bulk silicon wafer

Junfeng Song, Xianshu Luo, Xiaoguang Tu, Lianxi Jia, Qing Fang, Tsung-Yang Liow, Mingbin Yu, and Guo-Qiang Lo  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 19546-19554 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2103 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel three-dimensional (3D) monolithic optoelectronic integration platform. Such platform integrates both electrical and photonic devices in a bulk silicon wafer, which eliminates the high-cost silicon-on-insulator (SOI) wafer and is more suitable for process requirements of electronic and photonic integrated circuits (ICs). For proof-of-concept, we demonstrate a three-dimensional photodetector and WDM receiver system. The Ge is grown on a 8-inch bulk silicon wafer while the optical waveguide is defined in a SiN layer which is deposited on top of it, with ~4 µm oxide sandwiched in between. The light is directed to the Ge photodetector from the SiN waveguide vertically by using grating coupler with a Aluminum mirror on top of it. The measured photodetector responsivity is ~0.2 A/W and the 3-dB bandwidth is ~2 GHz. Using such vertical-coupled photodetector, we demonstrated an 8-channel receiver by integrating a 1 × 8 arrayed waveguide grating (AWG). High-quality optical signal detection with up to 10 Gbit/s data rate is demonstrated, suggesting a 80 Gbit/s throughput. Such receiver can be applied to on-chip optical interconnect, DRAM interface, and telecommunication systems.

© 2014 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(050.2770) Diffraction and gratings : Gratings
(130.0250) Integrated optics : Optoelectronics
(130.3120) Integrated optics : Integrated optics devices

ToC Category:

Original Manuscript: April 28, 2014
Revised Manuscript: June 27, 2014
Manuscript Accepted: June 29, 2014
Published: August 5, 2014

Junfeng Song, Xianshu Luo, Xiaoguang Tu, Lianxi Jia, Qing Fang, Tsung-Yang Liow, Mingbin Yu, and Guo-Qiang Lo, "Three-dimensional (3D) monolithically integrated photodetector and WDM receiver based on bulk silicon wafer," Opt. Express 22, 19546-19554 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Pavesi and G. Guillot, Optical Interconnects: The Silicon Approach (Springer, 2006).
  2. Y. Vlasov, “Silicon photonics for next generation computing systems,” in European Conference on Optical Communications (2008). [CrossRef]
  3. A. Barkai, Y. Chetrit, O. Cohen, R. Cohen, N. Elek, E. Ginsburg, S. Litski, A. Michaeli, O. Raday, D. Rubin, G. Sarid, N. Izhaky, M. Morse, O. Dosunmu, A. Liu, L. Liao, H. Rong, Y.- Kuo, S. Xu, D. Alduino, J. Tseng, H.-F. Liu, and M. Paniccia, “Integrated silicon photonics for optical networks,” J. Opt. Netw.6(1), 25–47 (2007). [CrossRef]
  4. D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009). [CrossRef]
  5. B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, “Advances in Silicon-on-Insulator Optoelectronics,” IEEE J. Sel. Top. Quantum Electron.4(6), 938–947 (1998). [CrossRef]
  6. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010). [CrossRef]
  7. J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. Van Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” IEEE Photon. Technol. Lett.20(4), 309–311 (2008). [CrossRef]
  8. P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express14(2), 664–669 (2006). [CrossRef] [PubMed]
  9. Y. O. Noh, J. M. Kim, M. S. Yang, H. J. Choi, H. J. Lee, Y. H. Won, and S. G. Han, “Thermooptic 2× 2 asymmetric digital optical switches with zero-voltage operation state,” IEEE Photon. Technol. Lett.16(2), 446–448 (2004). [CrossRef]
  10. J. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express16(20), 15304–15311 (2008). [CrossRef] [PubMed]
  11. Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett.23(8), 525–527 (2011). [CrossRef]
  12. T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon Optical Interconnect Device Technologies for 40 Gb/s and Beyond,” IEEE J. Sel. Top. Quantum Electron.19(2), 8200312 (2013). [CrossRef]
  13. X. Tu, T.-Y. Liow, J. Song, M. Yu, and G. Q. Lo, “Fabrication of low loss and high speed silicon optical modulator using doping compensation method,” Opt. Express19(19), 18029–18035 (2011). [CrossRef] [PubMed]
  14. D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012). [CrossRef]
  15. N. N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C. C. Kung, W. Qian, J. Fong, R. Shafiiha, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “30GHz Ge electro-absorption modulator mintegrated with 3 μm silicon-on-insulator waveguide,” Opt. Express19(8), 7062–7067 (2011). [CrossRef] [PubMed]
  16. Q. Fang, L. Jia, J. Song, A. E. Lim, X. Tu, X. Luo, M. Yu, and G. Lo, “Demonstration of a vertical pin Ge-on-Si photo-detector on a wet-etched Si recess,” Opt. Express21(20), 23325–23330 (2013). [CrossRef] [PubMed]
  17. T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: onolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010). [CrossRef]
  18. A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE97(7), 1216–1238 (2009). [CrossRef]
  19. X. Luo, J. Song, S. Feng, A. Poon, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012). [CrossRef]
  20. Y. Goebuchi, M. Hisada, T. Kato, and Y. Kokubun, “Optical cross-connect circuit using hitless wavelength selective switch,” Opt. Express16(2), 535–548 (2008). [CrossRef] [PubMed]
  21. C. R. Doerr, L. L. Buhl, L. Chen, and N. Dupuis, “Monolithic flexible-grid 1 2 wavelength-selective switch in silicon photonics,” J. Lightwave Technol.30(4), 473–478 (2012). [CrossRef]
  22. H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quantum Electron.17(3), 671–688 (2011). [CrossRef]
  23. J. Li, G. Li, X. Zheng, K. Raj, A. V. Krishnamoorthy, and J. F. Buckwalter, “A 25-Gb/s, monolithic optical transmitter with micro-ring modulator in 130nm SOI CMOS,” IEEE Photon. Technol. Lett.25(19), 1901–1903 (2013). [CrossRef]
  24. S. Jatar, Y. Malinge, Z. Zhou, H. Liang, S. Liao, Z. Li, C. Bushyakanist, D. C. Lee, R. Shafiiha, and J. Luff, “Performance of parallel 4× 25 Gbs transmitter and receiver fabricated on SOI platform,” in 2012 IEEE 9th International Conference on Group IV Photonics (GFP) (IEEE, 2012), pp. 159–161.
  25. X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo, I. Shubin, J. Li, J. Yao, P. Dong, D. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, E. Alon, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express19(6), 5172–5186 (2011). [CrossRef] [PubMed]
  26. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000). [CrossRef] [PubMed]
  27. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008). [CrossRef]
  28. J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—a platform for practical nonlinear optics,” Proc. IEEE97(7), 1304–1316 (2009). [CrossRef]
  29. W. S. Zaoui, M. F. Rosa, W. Vogel, M. Berroth, J. Butschke, and F. Letzkus, “Cost-effective CMOS-compatible grating couplers with backside metal mirror and 69% coupling efficiency,” Opt. Express20(26), B238–B243 (2012). [CrossRef] [PubMed]
  30. S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express16(25), 20809–20816 (2008). [CrossRef] [PubMed]
  31. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011). [CrossRef]
  32. N. Duan, T.-Y. Liow, A. E.-J. Lim, L. Ding, and G. Q. Lo, “310 GHz gain-bandwidth product Ge/Si avalanche photodetector for 1550 nm light detection,” Opt. Express20(10), 11031–11036 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited