OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19555–19566

Extraction of absorption coefficients from as-grown GaN nanowires on opaque substrates using all-optical method

R Jayaprakash, D Ajagunna, S Germanis, M Androulidaki, K Tsagaraki, A Georgakilas, and N T Pelekanos  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 19555-19566 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3800 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a new all-optical method to measure absorption coefficients in any family of as-grown nanowires, provided they are grown on a substrate having considerable difference in permittivity with the nanowire-air matrix. In the case of high crystal quality, strain-free GaN nanowires, grown on Si (111) substrates, the extracted absorption coefficients do not exhibit any enhancement compared to bulk GaN values, unlike relevant claims in the literature. This could be attributed to the relatively small diameters, short heights, and high densities of our nanowire arrays.

© 2014 Optical Society of America

OCIS Codes
(080.2720) Geometric optics : Mathematical methods (general)
(100.2960) Image processing : Image analysis
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(130.5990) Integrated optics : Semiconductors
(160.4760) Materials : Optical properties
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(260.2065) Physical optics : Effective medium theory

ToC Category:

Original Manuscript: April 17, 2014
Revised Manuscript: July 3, 2014
Manuscript Accepted: July 4, 2014
Published: August 5, 2014

R Jayaprakash, D Ajagunna, S Germanis, M Androulidaki, K Tsagaraki, A Georgakilas, and N T Pelekanos, "Extraction of absorption coefficients from as-grown GaN nanowires on opaque substrates using all-optical method," Opt. Express 22, 19555-19566 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007). [CrossRef] [PubMed]
  2. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009). [CrossRef] [PubMed]
  3. L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007). [CrossRef]
  4. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  5. Y. Lu and A. Lal, “High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography,” Nano Lett. 10(11), 4651–4656 (2010). [CrossRef] [PubMed]
  6. L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009). [CrossRef] [PubMed]
  7. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009). [CrossRef] [PubMed]
  8. J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express 18(26), 27589–27605 (2010). [CrossRef] [PubMed]
  9. P. Kailuweit, M. Peters, J. Leene, K. Mergenthaler, F. Dimroth, and A. W. Bett, “Numerical simulations of absorption properties of InP nanowires for solar cell applications,” Prog. Photovolt. Res. Appl. 20(8), 945–953 (2012). [CrossRef]
  10. H. Guo, L. Wen, X. Li, Z. Zhao, and Y. Wang, “Analysis of optical absorption in GaAs nanowire arrays,” Nanoscale Res. Lett. 6(1), 617 (2011). [CrossRef] [PubMed]
  11. T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012). [CrossRef] [PubMed]
  12. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013). [CrossRef] [PubMed]
  13. P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nat. Photonics 7(4), 306–310 (2013). [CrossRef]
  14. D. Cherns, L. Meshi, I. Griffiths, S. Khongphetsak, S. V. Novikov, N. R. S. Farley, R. P. Campion, and C. T. Foxon, “Defect-controlled growth of GaN nanorods on (0001)sapphire by molecular beam epitaxy,” Appl. Phys. Lett. 93(11), 111911 (2008). [CrossRef]
  15. K. Kornitzer, T. Ebner, M. Grehl, K. Thonke, R. Sauer, C. Kirchner, V. Schwegler, M. Kamp, M. Leszczynski, I. Grzegory, and S. Porowski, “High-Resolution Photoluminescence and Reflectance Spectra of Homoepitaxial GaN Layers,” Phys. Status Solidi 216(1), 5–9 (1999). [CrossRef]
  16. B. Monemar, “Bound excitons in GaN,” J. Phys. Condens. Matter 13(32), 7011–7026 (2001). [CrossRef]
  17. M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys. 94(9), 5623–5632 (2003). [CrossRef]
  18. L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, M. Steffen, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 878–888 (2011).
  19. C. Pfüller, O. Brandt, F. Grosse, T. Flissikowski, C. Chèze, V. Consonni, L. Geelhaar, H. Grahn, and H. Riechert, “Unpinning the Fermi level of GaN nanowires by ultraviolet radiation,” Phys. Rev. B 82(4), 045320 (2010). [CrossRef]
  20. P. J. Schuck, M. D. Mason, R. D. Grober, O. Ambacher, A. P. Lima, C. Miskys, R. Dimitrov, and M. Stutzmann, “Spatially resolved photoluminescence of inversion domain boundaries in GaN-based lateral polarity heterostructures,” Appl. Phys. Lett. 79(7), 952 (2001). [CrossRef]
  21. P. Corfdir, P. Lefebvre, J. Ristić, P. Valvin, E. Calleja, A. Trampert, J.-D. Ganière, and B. Deveaud-Plédran, “Time-resolved spectroscopy on GaN nanocolumns grown by plasma assisted molecular beam epitaxy on Si substrates,” J. Appl. Phys. 105(1), 013113 (2009). [CrossRef]
  22. W. Shan, A. J. Fischer, S. J. Hwang, B. D. Little, R. J. Hauenstein, X. C. Xie, J. J. Song, D. S. Kim, B. Goldenberg, R. Horning, S. Krishnankutty, W. G. Perry, M. D. Bremser, and R. F. Davis, “Intrinsic exciton transitions in GaN,” J. Appl. Phys. 83(1), 455–461 (1998). [CrossRef]
  23. A. J. Fischer, W. Shan, J. J. Song, Y. C. Chang, R. Horning, and B. Goldenberg, “Temperature-dependent absorption measurements of excitons in GaN epilayers,” Appl. Phys. Lett. 71(14), 1981–1983 (1997). [CrossRef]
  24. B. Gil, “Modulation spectroscopy of the Group III nitrides,” in Group III Nitride Semiconductor Compounds: Physics and Applications (Clarendon Press, 1998), pp. 158–181.
  25. J. Gomez Rivas, O. Muskens, M. T. Borgstrom, S. Diedenhofen, and E. Bakkers, “Optical Anisotropy of Semiconductor Nanowires,” in One-Dimensional Nanostructures (Springer New York, 2008), pp. 127–145.
  26. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008). [CrossRef] [PubMed]
  27. S. A. Furman and A. V. Tikhonravov, “Spectral Characteristics of Multi-Layer Coatings: Theory,” in Basics of Optics of Multilayer Systems (Atlantica Séguier Frontières, 1992), Vol. 0, pp. 1–102.
  28. M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, V. Lakshminarayanan, E. Van Stryland, and C. MacDonald, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics, Volume 4 (McGraw-Hill Prof Med/Tech, 2009), p. 1152.
  29. A. H. Sihvola and O. P. M. Pekonen, “Effective medium formulae for bi-anisotropic mixtures,” J. Phys. D Appl. Phys. 29(3), 514–521 (1996). [CrossRef]
  30. J. B. Baxter and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B 110(50), 25229–25239 (2006). [CrossRef] [PubMed]
  31. J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997). [CrossRef]
  32. B. Gil, “Optical Properties and Lasing in GaN,” in Group III Nitride Semiconductor Compounds: Physics and Applications (1998), pp. 182–241.
  33. A. Armstrong, Q. Li, Y. Lin, A. A. Talin, and G. T. Wang, “GaN nanowire surface state observed using deep level optical spectroscopy,” Appl. Phys. Lett. 96(16), 163106 (2010). [CrossRef]
  34. R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. V D Hart, T. Stoica, and H. Lüth, “Size-dependent photoconductivity in MBE-grown GaN-nanowires,” Nano Lett. 5(5), 981–984 (2005). [CrossRef] [PubMed]
  35. V. N. Tuoc, T. D. Huan, and L. T. H. Lien, “Modeling study on the properties of GaN/AlN core/shell nanowires by surface effect suppression,” Phys. Status Solidi 9, 1–9 (2012).
  36. K. A. Bertness, S. Member, N. A. Sanford, and A. V. Davydov, “GaN Nanowires Grown by Molecular Beam Epitaxy,” Quantum 17, 847–858 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited