OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19567–19572

Plasmonic graded nano-disks as nano-optical conveyor belt

Zhiwen Kang, Haifei Lu, Jiajie Chen, Kun Chen, Fang Xu, and Ho-Pui Ho  »View Author Affiliations


Optics Express, Vol. 22, Issue 16, pp. 19567-19572 (2014)
http://dx.doi.org/10.1364/OE.22.019567


View Full Text Article

Enhanced HTML    Acrobat PDF (865 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a plasmonic system consisting of nano-disks (NDs) with graded diameters for the realization of nano-optical conveyor belt. The system contains a couple of NDs with individual elements coded with different resonant wavelengths. By sequentially switching the wavelength and polarization of the excitation source, optically trapped target nano-particle can be transferred from one ND to another. The feasibility of such function is verified based on the three-dimensional finite-difference time-domain technique and the Maxwell stress tensor method. Our design may provide an alternative way to construct nano-optical conveyor belt with which target molecules can be delivered between trapping sites, thus enabling many on-chip optofluidic applications.

© 2014 Optical Society of America

OCIS Codes
(230.1150) Optical devices : All-optical devices
(240.6680) Optics at surfaces : Surface plasmons
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Plasmonics

History
Original Manuscript: July 22, 2014
Manuscript Accepted: July 24, 2014
Published: August 6, 2014

Virtual Issues
Vol. 9, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Zhiwen Kang, Haifei Lu, Jiajie Chen, Kun Chen, Fang Xu, and Ho-Pui Ho, "Plasmonic graded nano-disks as nano-optical conveyor belt," Opt. Express 22, 19567-19572 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-16-19567


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986). [CrossRef] [PubMed]
  2. T. T. Perkins, “Optical traps for single molecule biophysics: a primer,” Laser Photon. Rev.3(1-2), 203–220 (2009). [CrossRef]
  3. H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett.89(24), 246802 (2002). [CrossRef] [PubMed]
  4. L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express17(8), 6018–6024 (2009). [CrossRef] [PubMed]
  5. B. J. Roxworthy and K. C. Toussaint., “Plasmonic nanotweezers: strong influence of adhesion layer and nanostructure orientation on trapping performance,” Opt. Express20(9), 9591–9603 (2012). [CrossRef] [PubMed]
  6. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett.10(3), 1006–1011 (2010). [CrossRef] [PubMed]
  7. A. E. Çetin, A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, “Monopole antenna arrays for optical trapping, spectroscopy, and sensing,” Appl. Phys. Lett.98(11), 111110 (2011). [CrossRef]
  8. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonicnano-tweezer with an integrated heat sink,” Nat. Commun.2, 1–6 (2011).
  9. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett.10(9), 3506–3511 (2010). [CrossRef] [PubMed]
  10. Z. Kang, H. Zhang, H. Lu, and H. P. Ho, “Double-layered metal nano-strip antennas for sensing applications,” Plasmonics8(2), 289–294 (2013). [CrossRef]
  11. Z. Kang, H. Zhang, H. Lu, J. Xu, H. C. Ong, P. Shum, and H. P. Ho, “Plasmonic optical trap having very large active volume realized with nano-ring structure,” Opt. Lett.37(10), 1748–1750 (2012). [CrossRef] [PubMed]
  12. T. Shoji, M. Shibata, N. Kitamura, F. Nagasawa, M. Takase, K. Murakoshi, A. Nobuhiro, Y. Mizumoto, H. Ishihara, and Y. Tsuboi, “Reversible photoinduced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure,” J. Phys. Chem. C117(6), 2500–2506 (2013). [CrossRef]
  13. K. Y. Chen, A. T. Lee, C. C. Hung, J. S. Huang, and Y. T. Yang, “Transport and trapping in two-dimensional nanoscale plasmonic optical lattice,” Nano Lett.13(9), 4118–4122 (2013). [CrossRef] [PubMed]
  14. A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett.12(11), 5581–5586 (2012). [CrossRef] [PubMed]
  15. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011). [CrossRef]
  16. P. Hansen, Y. Zheng, J. Ryan, and L. Hesselink, “Nano-optical conveyor belt, part I: Theory,” Nano Lett.14(6), 2965–2970 (2014). [CrossRef] [PubMed]
  17. Y. Zheng, J. Ryan, P. Hansen, Y. T. Cheng, T. J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: Demonstration of handoff between near-field optical traps,” Nano Lett.14(6), 2971–2976 (2014). [CrossRef] [PubMed]
  18. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett.100(25), 256803 (2008). [CrossRef] [PubMed]
  19. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett.102(5), 056801 (2009). [CrossRef] [PubMed]
  20. L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B80(16), 161106 (2009). [CrossRef]
  21. L. Chen, G. P. Wang, X. Li, W. Li, Y. Shen, J. Lai, and S. Chen, “Broadband slow-light in graded-grating-loaded plasmonic waveguides at telecom frequencies,” Appl. Phys. B104(3), 653–657 (2011). [CrossRef]
  22. I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano5(4), 2535–2546 (2011). [CrossRef] [PubMed]
  23. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  24. E. J. Heilweil and R. M. Hochstrasser, “Nonlinear spectroscopy and picosecond transient grating study of colloidal gold,” J. Chem. Phys.82(11), 4762–4770 (1985). [CrossRef]
  25. G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: influence of morphology,” Appl. Phys. Lett.94(15), 153109 (2009). [CrossRef]
  26. J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano5(7), 5457–5462 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited