OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19595–19609

New neural-network-based method to infer total ozone column amounts and cloud effects from multi-channel, moderate bandwidth filter instruments

Lingling Fan, Wei Li, Arne Dahlback, Jakob J. Stamnes, Snorre Stamnes, and Knut Stamnes  »View Author Affiliations


Optics Express, Vol. 22, Issue 16, pp. 19595-19609 (2014)
http://dx.doi.org/10.1364/OE.22.019595


View Full Text Article

Enhanced HTML    Acrobat PDF (4289 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new method is presented based on a radial basis function neural network (RBF-NN) to analyze data obtained by ultraviolet (UV) irradiance instruments. Application of the RBF-NN method to about three years of data obtained by a NILU-UV device, which is a multi-channel, moderate bandwidth filter instrument, revealed that compared to the traditional Look-up table (LUT) method, the RBF-NN method yielded better agreement with a 1% decrease in relative difference and an increase of 0.03 in correlation with total ozone column (TOC) values obtained from the Ozone Monitoring Instrument (OMI). Furthermore, the RBF-NN method retrieved more valid results (daily average values within a meaningful range (200–500 DU)) than the LUT method. Compared with RBF-NN retrievals, TOC values obtained from the OMI are underestimated under cloudy conditions. This finding agrees with conclusions reached by Anton and Loyola (2011).

© 2014 Optical Society of America

OCIS Codes
(010.4950) Atmospheric and oceanic optics : Ozone
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(200.4260) Optics in computing : Neural networks
(010.1615) Atmospheric and oceanic optics : Clouds

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 9, 2014
Revised Manuscript: July 17, 2014
Manuscript Accepted: July 17, 2014
Published: August 6, 2014

Citation
Lingling Fan, Wei Li, Arne Dahlback, Jakob J. Stamnes, Snorre Stamnes, and Knut Stamnes, "New neural-network-based method to infer total ozone column amounts and cloud effects from multi-channel, moderate bandwidth filter instruments," Opt. Express 22, 19595-19609 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-16-19595


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Lapeta, I. Dyras, and Z. Ustrnu, “Homogenization of the total ozone amount series derived from NOAA/TOVS data,” in Proceedings of International TOVS Study Conference, 4–10, Maratea, Italy (2006), pp. 599–605.
  2. A. Dahlback, H. A. Eide, B. A. K. Høiskar, R. O. Olsen, F. J. Schmidlin, S. C. Tsay, and K. Stamnes, “Comparison of data for ozone amounts and ultraviolet doses obtained from simultaneous measurements with various standard ultraviolet instruments,” Opt. Eng.44, 041010 (2005). [CrossRef]
  3. A. Dahlback, N. Gelsor, J. J. Stamnes, and Y. Gjessing, “UV measurements in the 3000–5000 m altitude region in Tibet,” J. Geophys. Res.112, D09308 (2007).
  4. A. Kazantzidis, A. F. Bais, M. M. Zempila, C. Meleti, K. Eleftheratos, and C. S. Zerefos, “Evaluation of ozone column measurements over Greece with NILU-UV multi-channel radiometers,” Int. J. Remote Sens.30(15–16), 4273–4281 (2009). [CrossRef]
  5. G. Norsang, L. Kocbach, W. Tsoja, J. J. Stamnes, A. Dahlbach, and P. Nema, “Ground-based measurements and modelling of solar UV-B radiation in Lhasa, Tibet,” Atmos. Environ.43, 1498–1502 (2009). [CrossRef]
  6. G. Norsang, L. Kocbach, J. J. Stamnes, W. Tsoja, and N. Pingcuo, “Spatial distribution and temporal variation of solar UV radiation over the Tibetan Plateau,” Appl. Phys. Res.3, 37–46 (2011). [CrossRef]
  7. G. Norsang, Y. Chen, N. Pingcuo, A Dahlback, Ø. Frette, B. Kjeldstad, B. Hamre, K. Stamnes, and J. J. Stamnes, “Comparison of ground-based measurements of solar UV radiation at four sites on the Tibetan Plateau,” Appl. Opt., in press (2014). [CrossRef] [PubMed]
  8. M. H. Beale, M. T. Hagan, and B. Demuth, Neural Network Toolbox User’s Guide (The MathWorks. Inc, 2013).
  9. C. M. Bishop, Neural Networks for Pattern Recognition (Clarendon, 1995).
  10. S. Whiteson and P. Stone, “Evolutionary function approximation for reinforcement learning,” J. Mach. Learn. Res.7, 877–917 (2006).
  11. S. Tamura and A. Waibel, “Noise reduction using connectionist models,” in ICASSP (1988), pp. 553–556.
  12. J. Matej and R. M. Lewitt, “Practical consideration of 3-D image reconstruction using spherically symmetric volume elements,” IEEE Trans. Med. Imag.15, 68–78 (1996). [CrossRef]
  13. Z. Caiqing, Q. Ruonan, and Q. Zhiwen, “Comparing BP and RBF neural network for forecasting the resident consumer level by MATLAB,” in International Conference on Computer and Electrical Engineering (2008), pp. 169–172.
  14. W. J. Blackwell, “A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high spectral resolution sounding data,” IEEE Trans. Geosci. Remote Sens.43, 2535–2546 (2005). [CrossRef]
  15. H. Maitha, A. Shamisi, A. H. Assi, and H. A. N. Hejase, “Engineering education and research using MATLAB,” Using MATLAB to Develop Artificial Neural Network Models for Predicting Global Solar Radiation in Al Ain City, UAE (CC BY 3.0US, 2011).
  16. M. D. Müller, A. K. Kaifel, and M. Weber, “Ozone from GOME data using neural network technique,” in Proc. Looking Down to Earth in the New Millenium Symp. (2000).
  17. D. G. Loyola and M. Coldewey-Egbers, “Multi-sensor data merging with stacked neural networks for the creation of satellite long-term climate data records,” EURASIP J. Adv. Sig. Pr.1, 1–10 (2012).
  18. A. Dahlback, “Measurements of biologically effective UV doses, total ozone abundances, and cloud effects with multichannel, moderate bandwidth filter instrument,” Appl. Opt.35, 6514–6521 (1996). [CrossRef] [PubMed]
  19. K. Stamnes, J. Slusser, and M. Bowen, “Derivation of total ozone abundance and cloud effects from spectral irradiance measurements,” Appl. Opt.30, 4418–4426 (1991). [CrossRef] [PubMed]
  20. B. A. K. Høiskar, R. Haugen, T. Danielsen, A. Kylling, K. Edvardsen, A. Dahlback, B. Johnsen, M. Blumthaler, and J. Schreder, “Multichannel moderate-bandwidth filter instrument for measurement of the ozone-column amount, cloud transmittance, and ultraviolet dose rates,” Appl. Opt.42, 3472–3479 (2003). [CrossRef] [PubMed]
  21. T. N. Aalerud and B. Johnsen, “The Norwegian UV Monitoring Network,” Norwegian Radiation Protection Authority, Østerås, Norway (2006).
  22. R. R. Cordero, G. Seckmeyer, D. Pissulla, L. DaSilva, and F. Labbe, “Uncertainty evaluation of spectral UV irradiance measurements,” Meas. Sci. Technol.19, 045104 (2008). [CrossRef]
  23. L. Fan, W. Li, A. Dahlback, J. J. Stamnes, S. Stamnes, and K. Stamnes, “Comparisons of three NILU-UV instruments deployed at the same site in the New York area,” Appl. Opt.53(17), 3598–3606 (2014). [CrossRef] [PubMed]
  24. Z. Ahmad, P. K. Bhartia, and N. Krotkov, “Spectral properties of backscattered UV radiation in cloudy atmospheres,” J. Geophys. Res.109, D01201 (2003).
  25. P. K. Bhartia and C. W. Wellemeyer, “OMI TOMS-V8 Total O3 Algorithm, Algorithm Theoretical Baseline Document:OMI Ozone Products,” vol. II, ATBDOMI-02, version 2.0 (2002).
  26. R. V. Martin, B. Sauvage, I. Folkins, C. E. Sioris, C. Boone, P. Bernath, and J. Ziemke, “Space-based constraints on the production of nitric oxide by lightning,” J. Geophys. Res.112, D09309 (2007).
  27. G. E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge University, 1999). [CrossRef]
  28. K. Stamnes, S. C. Tsay, W. J. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt.27, 2502–2509 (1988). [CrossRef] [PubMed]
  29. K. Stamnes, “The theory of multiple scattering of radiation in plane parallel atmospheres,” Rev. Geophys.24, 299–310 (1986). [CrossRef]
  30. A. Dahlback and K. Stamnes, “A new spherical model for computing the radiation field available for photolysis and heating at twilight,” Planet. Space Sci.39, 671–683 (1991). [CrossRef]
  31. U. S. Air Force, Gov. Print. Off., “U. S. Standard Atmosphere,” (NASA, 1976), available at http://modelweb.gsfc.nasa.gov .
  32. T. N. Woods, D. K. Prinz, G. J. Rottmann, J. London, P. C. Crane, R. P. Cebula, E. Hilsenrath, G. E. Brueckner, M. D. Andrews, O. R. White, M. E. VanHoosier, L. E. Floyd, L. C. Herring, B. G. Knapp, C. K. Pankrantz, and P. A. Reiser, “Validation of the UARS solar ultraviolet irradiances: Comparison with the Atlas 1 and 2 measurements,” J. Geophys. Res.101, 9541–9569 (1996). [CrossRef]
  33. A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, Ml, and Hoke, and others, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options,” in Fourth International Asia-Pacific Environmental Remote Sensing Symposium 2004: Remote Sensing of the Atmosphere, Ocean, Environment, and Space, International Society for Optics and Photonics (2005), pp. 88–95.
  34. R. D. McPeters, P. K. Bhartia, A. J. Krueger, J. R. Herman, B. M. Schlesinger, C. G. Wellemeyer, C. J. Seftor, G. Jaross, S. L. Taylor, T. Swissler, O. Torres, G. Labow, W. Byerly, and R. P. Cebula, “Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide,” NASA Reference Publication(1996).
  35. C. R. Roy, H. P. Gies, D. J. Lugg, S. Toomey, and D. W. Tomlinson, “The effect of clouds on enhancing UVB irradiance at the Earth’s surface: A one year study,” Geophys. Res. Lett.27, 3337–3340 (1998).
  36. D. S. Broomhead and D. Lowe, “Radial basis functions, multi-variable functional interpolation and adaptive networks,” in Royal Signals and Radar Establishment, Malvern, United Kingdom, No. RSRE-MEMO-4148 (1988).
  37. M. J. L. Orr, “Introduction to radial basis function networks,” Technical report, University of Edinburgh (1996).
  38. A. G. Bors, “Introduction of the radial basis function (RBF) networks,” OSEE1, DSP Algorithms: Multimedia, 1–7 (2001).
  39. Y. X. Hu and K. Stamnes, “An accurate parameterization of the radiative properties of water clouds suitable for use in climate models,” J. Clim.6, 728–742 (1993). [CrossRef]
  40. E. W. Weisstein, “Statistical Correlation,” available at http://mathworld.wolfram.com .
  41. J. Bennett and W. Briggs, Using and Understanding Mathematics: A Quantitative Reasoning Approach (Pearson, 2008).
  42. M. Antón and D. Loyola, “Influence of cloud properties on satellite total ozone observations,” J. Geophys. Res.116, D03208 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited