OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19758–19773

Analytical reconstruction of the bioluminescent source with priors

Hakan Erkol, Aytac Demirkiran, Nasire Uluc, and Mehmet B. Unlu  »View Author Affiliations

Optics Express, Vol. 22, Issue 16, pp. 19758-19773 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1010 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bioluminescence imaging has been a popular tool in small animal imaging. During the last decade, the efforts have focused on the development of tomographic systems. However, due to the difficulties in the nature of inverse source problem, multi-modal systems have been the center of attention for the last couple of years. These systems provide complementary information such that the difficulties of the inverse source problem could be overcome using the a priori information obtained. Motivated by these advances in multi-modal systems, this work presents a novel analytical reconstruction of the bioluminescent source. It is shown that if source strength is known a priori then source position could be calculated or vice versa, if source location is known a priori, source strength could be calculated as well as the photon fluence rate. The determination of the source location can be achieved by another imaging system such as X-ray computed tomography. Therefore, in bioluminescence tomography together with an imaging system can be utilized as a multi-modal system. In this work, conventional finite element based simulations are also performed and the numerical results are compared with the analytical ones. It turns out to be that the analytical results are in a good accordance with the numerical results.

© 2014 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5270) Medical optics and biotechnology : Photon density waves
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 6, 2014
Revised Manuscript: July 23, 2014
Manuscript Accepted: July 26, 2014
Published: August 8, 2014

Virtual Issues
Vol. 9, Iss. 10 Virtual Journal for Biomedical Optics

Hakan Erkol, Aytac Demirkiran, Nasire Uluc, and Mehmet B. Unlu, "Analytical reconstruction of the bioluminescent source with priors," Opt. Express 22, 19758-19773 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31(8), 2289–2299 (2004). [CrossRef] [PubMed]
  2. C. Darne, Y. Lu, and E. M. Sevick-Muraca, “Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update,” Phys. Med. Biol. 59, R1–R64 (2014). [CrossRef]
  3. J. A. Guggenheim, H. R. A. Basevi, J. Frampton, I. B. Styles, and H. Dehghani, “Multi-modal molecular diffuse optical tomography system for small animal imaging,” Meas. Sci. Technol. 24, 105405 (2013). [CrossRef] [PubMed]
  4. H. Yan, Y. Lin, W. C. Barber, M. B. Unlu, and G. Gulsen, “A gantry-based tri-modality system for bioluminescence tomography,” Rev. Sci. Instrum. 83, 043708 (2012). [CrossRef] [PubMed]
  5. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44(11), 2082–2093 (2005). [CrossRef] [PubMed]
  6. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), Vol 1.
  7. W. Han, J. A. Eichholz, and G. Wang, “On a family of differential approximations of the radiative transfer equation,” J. Math. Chem. 50, 689–702 (2011). [CrossRef]
  8. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, 41–93 (1999). [CrossRef]
  9. L. H. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging Hoboken (Wiley, 2007).
  10. M. S. Patterson and S. J. Madsen, “Diffusion equation representation of photon migration in tissue,” IEEE MTT-S Digest 2, 905–908 (1991).
  11. M. Schweiger and S. R. Arridge, “Optical tomographic reconstructon in a complex head model using a priori region boundary condition,” Phys. Med. Biol. 44, 2703–2721 (1999). [CrossRef] [PubMed]
  12. M. B. Unlu, O. Birgul, R. Shafiha, G. Gulsen, and O. Nalcıoğlu, “Diffuse optical tomographic reconstruction using multifrequency data,” J. Biomed. Opt. 11, 054008 (2006). [CrossRef]
  13. G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. Mclennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14, 7801–7809 (2006). [CrossRef] [PubMed]
  14. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31, 365–367 (2006). [CrossRef] [PubMed]
  15. H. Dehghani and B. W. Pogue, “Spectrally resolved bioluminescence optical tomography using the reciprocity approach,” Med. Phys. 35, 4863–4871 (2008). [CrossRef] [PubMed]
  16. M. A. Naser and M. S. Patterson, “Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties,” Biomed. Opt. Express 1, 512–526 (2010). [CrossRef]
  17. Q. Zhang, L. Yin, Y. Tan, Z. Yuan, and H. Jiang, “Quantitative bioluminescence tomography guided by diffuse optical tomography,” Opt. Express 16, 1481–1486 (2008). [CrossRef] [PubMed]
  18. S. R. Arridge, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20, 299–309 (1993). [CrossRef] [PubMed]
  19. M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the finite element method for the forward and inverse model in optical tomography,” J. Mat. Imaging Vis. 3, 263–283 (1993). [CrossRef]
  20. M. S. Patterson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  21. J. M. Schmitt, G. X. Zhou, E. C. Walker, and R. T. Wall, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990). [CrossRef] [PubMed]
  22. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992). [CrossRef] [PubMed]
  23. T. J. Farrel, M. S. Patterson, and B. C. Wilson, “A diffusion theory model of specially resolved steady state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992). [CrossRef]
  24. D. A. Boas, M. A. O’leary, B. Chances, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: Analytic solution and applications,” Proc. Natl. Acad. Sci. U.S.A. 91, 4887–4891 (1994). [CrossRef] [PubMed]
  25. S. A. Walker, D. A. Boas, and E. Gratton, “Photon density waves scattered from cylindrical inhomogeneities: theory and experiments,” Appl. Opt. 37, 1935–1944 (1998). [CrossRef]
  26. B. W. Pogue and M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994). [CrossRef] [PubMed]
  27. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation I. Theory,” Appl. Opt. 36, 4587–4599 (1997). [CrossRef] [PubMed]
  28. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 (1997). [CrossRef]
  29. F. Martelli, A. Sassaroli, Y. Yamada, and G. Zaccanti, “Analytical approximate solutions of the timedomain diffusion equation in layered slabs,” J. Opt. Soc. Am. A. 19, 71–80 (2002). [CrossRef]
  30. A. Kienle, “Light diffusion through a turbid parallelepiped,” J. Opt. Soc. Am. A 22, 1883–1888 (2005). [CrossRef]
  31. F. Martelli, A. Sassaroli, S. D. Bianco, and G. Zaccanti, “Solution of the time-dependent diffusion equation for a three-layer medium: application to study photon migration through a simplified adult head model,” Phys. Med. Biol. 52, 2827–2843 (2007). [CrossRef] [PubMed]
  32. A. Liemert and A. Kienle, “Light diffusion in a turbid cylinder. I. Homogeneous case,” Opt. Express 18, 9456–9473 (2010). [CrossRef] [PubMed]
  33. A. Zhang, D. Piao, C. F. Bunting, and B. W. Pogue, “Photon diffusion in a homogeneous medium bounded externally or internally by an infinetely long circular cylindrical applicator. I. Steady-state theory,” J. Opt. Soc. Am. A 27, 648–662 (2010). [CrossRef]
  34. W. Cong, L. V. Wang, and G. Wang, “Formulation of photon diffusion from spherical bioluminescent sources in an infinite homogeneous medium,” Biomed. Eng. Online 3, 1–6 (2004). [CrossRef]
  35. S. Takatani and M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26, 656–664 (1979). [CrossRef] [PubMed]
  36. A. Liemert and A. Kienle, ‘Light diffusion in a turbid cylinder. II. Layered case,” Opt. Express 18, 9266–9279 (2010). [CrossRef] [PubMed]
  37. I. Dayan, S. Havlin, and G. H. Weiss, “Photon migration in a two-layer turbid medium A diffusion analysis,” J. Mod. Opt. 39, 1567–1582 (1992). [CrossRef]
  38. J. Sikora, A. Zacharopoulos, A. Douiri, M. Schweiger, L. Horesh, S. R. Arridge, and J. Ripoll, “Diffuse photon propagation in multilayered geometries,” Phys. Med. Biol. 51, 497–516 (2006). [CrossRef] [PubMed]
  39. A. Liemert and A. Kienle, “Light diffusion in N-layered turbid media: frequency and time domains,” J. Biomed. Opt. 15, 025002 (2010). [CrossRef] [PubMed]
  40. E. Okada, M. Firbank, M. Schwiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997). [CrossRef] [PubMed]
  41. L. O. Svaasand, T. Spott, J. B. Fishkin, T. Pham, B. J. Tromberg, and M. W. Berns, “Reflectance measurements of layered media with diffuse photon-density waves: a potential tool for evaluating deep burns and subcutaneous lesions,” Phys. Med. Biol. 44, 801–813 (1999). [CrossRef] [PubMed]
  42. A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44, 2689–2702 (1999). [CrossRef] [PubMed]
  43. B. W. Pogue, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Express 4, 270–286 (1999). [CrossRef] [PubMed]
  44. H. Dehghani and D. T. Delpy, “Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue,” Appl. Opt. 39, 4721–4729 (2000). [CrossRef]
  45. H. Dehghani, B. A. Brooksby, P. W. Pogue, and K. D. Paulsen, “Effects of refractive index on near-infrared tomography of the breast,” Appl. Opt. 44, 1870–1878 (2005). [CrossRef] [PubMed]
  46. P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006). [CrossRef] [PubMed]
  47. M. Schweiger and S. R. Arridge, “The finite-element method for the propagation of light in scattering media: frequency domain case,” Med. Phys. 24, 895–902 (1997). [CrossRef] [PubMed]
  48. J. Zhang, D. Chen, J. Liang, H. Xue, J. Lei, Q. Wang, D. Chen, M. Meng, Z. Jin, and J. Tian, “Incorporating MRI structural information into bioluminescence tomography: system, heterogeneous reconstruction and in vivo quantification,” Biomed. Opt. Express 5, 1861–1876 (2014). [CrossRef] [PubMed]
  49. M. A. Anastasio, J. Zhang, D. Modgil, and P. J. L. Rivière, “Application of inverse source concepts to photoacoustic tomography,” Inverse Problems 23, 21–35 (2007). [CrossRef]
  50. H. Gao, H. Zhao, W. Cong, and G. Wang, “Bioluminescence tomography in Gaussian prior,” Biomed. Opt. Express 1, 1259–1277 (2010). [CrossRef]
  51. B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Österberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction,” Appl. Opt. 40, 588–600 (2001). [CrossRef]
  52. S. G. Mykhlin, Mathematical Physics: An Advanced Course (North-Holland, 1970).
  53. Y. V. Egorov and M. A. Shubin, Partial Differential Equations (Springer, 1992).
  54. E. Demiralp and H. Beker, “Properties of bound states of the Schrödinger equation with attractive Dirac delta potentials,” J. Phys. A 36, 7449–7459 (2003). [CrossRef]
  55. M. Shendeleva, “Radiative transfer in a turbid medium with a varying refractive index: comment,” J. Opt. Soc. Am. A 21, 2464–2467 (2004). [CrossRef]
  56. R. Aronson, “Boundary conditions for diffusion of light,” J. Opt. Soc. Am. A 12, 2532–2539 (1995). [CrossRef]
  57. G. W. Faris, “Diffusion equation boundary conditions for the interface between turbid media: a comment,” J. Opt. Soc. Am. A 19, 519–520 (2002). [CrossRef]
  58. T. J. Farrel and M. S. Patterson, “Experimental verification of the effect of refractive index mismatch on the light fluence in a turbid medium,” J. Biomed. Opt. 6, 468–473 (2001). [CrossRef]
  59. J. M. Tualle, J. Prat, E. Tinet, and S. Avrillier, “Real-space Greens function calculation for the solution of the diffusion equation in stratified turbid media,” J. Opt. Soc. Am. A 17, 2046–2055 (2000). [CrossRef]
  60. H. Erkol and M. B. Unlu, “Virtual source method for diffuse optical imaging,” Appl. Opt. 52, 4933–4970 (2013). [CrossRef] [PubMed]
  61. T. Farrel and M. S. Patterson, “Experimental verification of the effect of refractive index mismatch on the light fluence in a turbid medium,” J. Biomed. Opt. 6, 468–473 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited