OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 17 — Aug. 25, 2014
  • pp: 19970–19989

Full-wave electromagentic analysis of a plasmonic nanoparticle separated from a plasmonic film by a thin spacer layer

Rahul Trivedi, Arun Thomas, and Anuj Dhawan  »View Author Affiliations


Optics Express, Vol. 22, Issue 17, pp. 19970-19989 (2014)
http://dx.doi.org/10.1364/OE.22.019970


View Full Text Article

Enhanced HTML    Acrobat PDF (1773 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents a theoretical analysis of the electromagnetic response of a plasmonic nanoparticle-spacer-plasmonic film system. The physical system consists of a spherical nanoparticle of a plasmonic material such as gold or silver over a plasmonic metal film and separated from the same by a dielectric spacer material. This paper presents a complete analytical solution of the Maxwell’s equations, to determine the optical fields near the gold nanoparticle. It was found that the electromagnetic fields in between the plasmonic nanoparticle and the plasmonic film are extremely sensitive to the spacing between the nanoparticle and the film. This could enable the use of such a system for various sensing applications. The non-local nature of the plasmonic medium was also included in our analysis and it’s effect on the resonances of the system was studied. The analytical solution was compared with an independent numerical method, the Finite Difference Time Domain (FDTD) method, to demonstrate the accuracy of the solution.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics
(260.3910) Physical optics : Metal optics
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(160.4236) Materials : Nanomaterials
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Plasmonics

History
Original Manuscript: April 29, 2014
Revised Manuscript: June 13, 2014
Manuscript Accepted: June 17, 2014
Published: August 12, 2014

Citation
Rahul Trivedi, Arun Thomas, and Anuj Dhawan, "Full-wave electromagentic analysis of a plasmonic nanoparticle separated from a plasmonic film by a thin spacer layer," Opt. Express 22, 19970-19989 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-17-19970


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  3. H. C. Van de Hulst, Light Scattering by Small Particles (John Wiley and Sons, 1957).
  4. T. Okamoto, Near-Field Optics and Surface Plasmon Polaritons, ed. S. Kawata, ed. (Springer-Verlag, 2001).
  5. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York: 2007).
  6. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999). [CrossRef]
  7. J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett.3(4), 485–491, (2003). [CrossRef]
  8. R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon Ruler with Angstrom Length Resolution,” ACS Nano6(10), 9237–9246 (2012). [CrossRef] [PubMed]
  9. J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett.8(8), 2245–2252 (2008). [CrossRef] [PubMed]
  10. C. Cirací, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernndez-Domnguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the Ultimate Limits of Plasmonic Enhancement,” Science337(6098), 1072–1074 (2012). [CrossRef] [PubMed]
  11. S. Mubeen, S. Zhang, N. Kim, S. Lee, S. Krämer, H. Xu, and M. Moskovits, “Plasmonic Properties of Gold Nanoparticles Separated from a Gold Mirror by an Ultra-thin Oxide,” Nano Lett.12(4), 2088–2094, (2012). [CrossRef] [PubMed]
  12. R. K. Chang and T. E. Furtak, eds. Surface-Enhanced Raman Scattering (Plenum, New York, 1982). [CrossRef]
  13. A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” J. Phys: Condensed Matter4(5), 1143–1212 (1992).
  14. H. Xu, E. J. Bjereld, M. Kall, and L. Borjesson, “Spectroscopy of single Hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett.83(21), 4357–4360 (1999). [CrossRef]
  15. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications (Springer, Berlin, 2006). [CrossRef]
  16. S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  17. P. K. Aravind and H. Metiu, “The enhancement of Raman and fluorescent intensity by small surface roughness. Changes in dipole emission,” Chem. Phys. Lett.74(2), 301–305 (1980). [CrossRef]
  18. P. K. Aravind and H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere plane structure, application to surface enhanced raman spectroscopy,” Surface Science124, 506–528 (1983). [CrossRef]
  19. R. Ruppin, “Optical Absorption by a small sphere over a substrate with inclusion of non local effect,” Phys. Rev. B45(19), 11209–11215 (1992). [CrossRef]
  20. A. Dhawan, S. J. Norton, M. D. Gerhold, and T. Vo-Dinh, “Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers,” Opt. Express17(12), 9688– 9697 (2008). [PubMed]
  21. V. V. Klimov and D. V. Guzatov, “Optical Properties of an atom in the presence of a two nanosphere cluster,” Quantum Electron.37(3), 209–230 (2007). [CrossRef]
  22. A. I. Fernández-Domínguez, S. A. Maier, and J. B. Pendry, “Transformation optics description of touching metal nanospheres,” Phys. Rev. B85(16), 165148 (2012). [CrossRef]
  23. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 2274021 (2003). [CrossRef]
  24. G. Pellegrini, G. Mattei, V. Bello, and P. Mazzoldi, “Interacting metal nanoparticles: Optical properties from nanoparticle dimers to core-satellite systems,” Mater. Sci. Eng. C27(5), 1347–1350 (2007). [CrossRef]
  25. J. B. Pendry, A. I. Fernandez-Dominguez, Y. Luo, and R. Zhao, “Capturing Photons with transformation optics,” Nature Physics9, 518–522 (2013). [CrossRef]
  26. C. Cirací, Y. Urzhumov, and D. R. Smith, “Effects of classical nonlocality on the optical response of three-dimensional plasmonic nanodimers,” J. Opt. Soc. Am.30(10), 2731–2736 (2013). [CrossRef]
  27. S. Raza, G. Toscano, A. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to non-local response,” Phys. Rev. Lett.84(12), 121412(R) (2011).
  28. Y. Luo, A. I. Fernández-Domínguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface plasmons and nonlocality: A simple model,” Phys. Rev. Lett111(9), 093901 (2013). [CrossRef] [PubMed]
  29. A. I. Fernández-Domínguez, A. Wiener, F. J. Garca-Vidal, S. A. Maier, and J. B. Pendry, “Transformation-Optics Description of Nonlocal Effects in Plasmonic Nanostructures,” Phys. Rev. Lett.108(22), 106802 (2012). [CrossRef] [PubMed]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  31. S. S. Acimovic, M. P. Kreuzer, M. U. Gonzlez, and R. Quidant, “Plasmon Near-Field Coupling in Metal Dimers as a Step toward Single-Molecule Sensing,” ACS Nano3(5), 12311237 (2009). [CrossRef]
  32. S. Li, M. L. Pedano, S. Chang, C. A. Mirkin, and G. C. Schatz, “Gap Structure Effects on Surface-Enhanced Raman Scattering Intensities for Gold Gapped Rods,” Nano Lett.10(5) 1722–1727 (2010). [CrossRef] [PubMed]
  33. M. D. Fischbein and M. Drndic, “Sub-10 nm Device Fabrication in a Transmission Electron Microscope,” Nano Lett.7(5), 13291337 (2007). [CrossRef]
  34. V. Auzelyte, C. Dais, P. Farquet, D. Grytzmacher, L. J. Heyderman, and F. Luo, “Extreme ultraviolet interference lithography at the Paul Scherrer Institut,” J. Micro/Nanolith. MEMS MOEMS8(2), 021204 (2009). [CrossRef]
  35. B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other yechniques,” Chem. Rev.105(4), 1171–1196 (2005). [CrossRef] [PubMed]
  36. B. U. Felderhof and R. B. Jones, “Addition theorems for spherical wave solutions of the vector Helmholtz equation,” J. Math. Phys.28(4), 836–839 (1987). [CrossRef]
  37. R. A. Sac, “Three dimensional addition theorems for arbitrary functions involving expansions in Spherical harmonics,” J. Math. Phys.5, 252 (1964). [CrossRef]
  38. C. Cirací, J. B. Pendry, and D. R. Smith, “Hydrodynamic model for Plasmonics: A Macroscopic Approach to a Microscopic Problem,” Chem. Phys. Chem.14(6), 1109–1116 (2013). [CrossRef] [PubMed]
  39. R. Ruppin, “Extinction properties of thin metallic nanowires,” Optics Commun.190(1), 205–209 (2001). [CrossRef]
  40. A. Moreau, C. Cirací, and D. R. Smith, “Impact of Non-local response on metallodielectric multilayers and optical patch antennas,” Phys. Rev. B87(4), 045401 (2013). [CrossRef]
  41. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method, 2nd ed. (Artech, Boston, MA, 2000).
  42. S. Mubeen, S. Zhang, N. Kim, S. Lee, S. Krämer, H. Xu, and M. Moskovits, “Plasmonic properties of gold nanoparticles separated from a gold Mirror by an ultrathin oxide,” Nano Lett.12, 2088 (2012). [CrossRef] [PubMed]
  43. P. B. Johnson and R. W. Christy, “Optical constants of nobel metals,” Phys.Rev.B6(12), 4370 (1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited