OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 17 — Aug. 25, 2014
  • pp: 20138–20143

Noise characterization of broadband fiber Cherenkov radiation as a visible-wavelength source for optical coherence tomography and two-photon fluorescence microscopy

Haohua Tu, Youbo Zhao, Yuan Liu, Yuan-Zhi Liu, and Stephen Boppart  »View Author Affiliations


Optics Express, Vol. 22, Issue 17, pp. 20138-20143 (2014)
http://dx.doi.org/10.1364/OE.22.020138


View Full Text Article

Enhanced HTML    Acrobat PDF (827 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical sources in the visible region immediately adjacent to the near-infrared biological optical window are preferred in imaging techniques such as spectroscopic optical coherence tomography of endogenous absorptive molecules and two-photon fluorescence microscopy of intrinsic fluorophores. However, existing sources based on fiber supercontinuum generation are known to have high relative intensity noise and low spectral coherence, which may degrade imaging performance. Here we compare the optical noise and pulse compressibility of three high-power fiber Cherenkov radiation sources developed recently, and evaluate their potential to replace the existing supercontinuum sources in these imaging techniques.

© 2014 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(180.1655) Microscopy : Coherence tomography
(180.4315) Microscopy : Nonlinear microscopy
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics

History
Original Manuscript: June 30, 2014
Revised Manuscript: August 2, 2014
Manuscript Accepted: August 3, 2014
Published: August 12, 2014

Virtual Issues
Vol. 9, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Haohua Tu, Youbo Zhao, Yuan Liu, Yuan-Zhi Liu, and Stephen Boppart, "Noise characterization of broadband fiber Cherenkov radiation as a visible-wavelength source for optical coherence tomography and two-photon fluorescence microscopy," Opt. Express 22, 20138-20143 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-17-20138


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000). [CrossRef] [PubMed]
  2. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011). [CrossRef] [PubMed]
  3. J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013). [CrossRef] [PubMed]
  4. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  5. Y. Wang, I. Tomov, J. S. Nelson, Z. Chen, H. Lim, and F. Wise, “Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography,” J. Opt. Soc. Am. A 22(8), 1492–1499 (2005). [CrossRef] [PubMed]
  6. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003). [CrossRef] [PubMed]
  7. C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18(2), 988–999 (2010). [CrossRef] [PubMed]
  8. J. Palero, V. Boer, J. Vijverberg, H. Gerritsen, and H. J. C. M. Sterenborg, “Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source,” Opt. Express 13(14), 5363–5368 (2005). [CrossRef] [PubMed]
  9. W. Zheng, D. Li, Y. Zeng, Y. Luo, and J. Y. Qu, “Two-photon excited hemoglobin fluorescence,” Biomed. Opt. Express 2(1), 71–79 (2011). [CrossRef] [PubMed]
  10. B. Schenkel, R. Paschotta, and U. Keller, “Pulse compression with supercontinuum generation in microstructure fibers,” J. Opt. Soc. Am. B 22(3), 687–693 (2005). [CrossRef]
  11. G. Chang, L.-J. Chen, and F. X. Kärtner, “Fiber-optic Cherenkov radiation in the few-cycle regime,” Opt. Express 19(7), 6635–6647 (2011). [CrossRef] [PubMed]
  12. H. Tu, J. Lægsgaard, R. Zhang, S. Tong, Y. Liu, and S. A. Boppart, “Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses,” Opt. Express 21(20), 23188–23196 (2013). [CrossRef] [PubMed]
  13. M.-C. Chan, C.-H. Lien, J.-Y. Lu, and B.-H. Lyu, “High power NIR fiber-optic femtosecond Cherenkov radiation and its application on nonlinear light microscopy,” Opt. Express 22(8), 9498–9507 (2014). [CrossRef] [PubMed]
  14. H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express 17(12), 9858–9872 (2009). [CrossRef] [PubMed]
  15. E. Beaurepaire, L. Moreaux, F. Amblard, and J. Mertz, “Combined scanning optical coherence and two-photon-excited fluorescence microscopy,” Opt. Lett. 24(14), 969–971 (1999). [CrossRef] [PubMed]
  16. S. Tang, Y. Zhou, and M. J. Ju, “Multimodal optical imaging with multiphoton microscopy and optical coherence tomography,” J Biophotonics 5(5-6), 396–403 (2012). [CrossRef] [PubMed]
  17. C. Vinegoni, T. S. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett. 88(5), 053901 (2006). [CrossRef]
  18. B. W. Graf, E. J. Chaney, M. Marjanovic, S. G. Adie, M. De Lisio, M. C. Valero, M. D. Boppart, and S. A. Boppart, “Long-term time-lapse multimodal intravital imaging of regeneration and bone-marrow-derived cell dynamics in skin,” Technology 01(1), 8–19 (2013). [CrossRef] [PubMed]
  19. F. Lu and W. Knox, “Low noise wavelength conversion of femtosecond pulses with dispersion micro-managed holey fibers,” Opt. Express 13(20), 8172–8178 (2005). [CrossRef] [PubMed]
  20. F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express 15(17), 10832–10841 (2007). [CrossRef] [PubMed]
  21. P. Cimalla, J. Walther, M. Mehner, M. Cuevas, and E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express 17(22), 19486–19500 (2009). [CrossRef] [PubMed]
  22. L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011). [CrossRef] [PubMed]
  23. U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20(3), 2851–2857 (2012). [CrossRef] [PubMed]
  24. S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photon. Technol. Lett. 22(14), 1057–1059 (2010). [CrossRef] [PubMed]
  25. X. Liu, G. E. Villanueva, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “Low-noise operation of all-fiber femtosecond Cherenkov laser,” IEEE Photon. Technol. Lett. 25(9), 892–895 (2013). [CrossRef] [PubMed]
  26. B. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23(4), 750–759 (2006). [CrossRef]
  27. S. Bourquin, A. Aguirre, I. Hartl, P. Hsiung, T. Ko, J. Fujimoto, T. Birks, W. Wadsworth, U. Bünting, and D. Kopf, “Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:Glass laser and nonlinear fiber,” Opt. Express 11(24), 3290–3297 (2003). [CrossRef] [PubMed]
  28. A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14(3), 1145–1160 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited