OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 17 — Aug. 25, 2014
  • pp: 20185–20192

Dynamic phase imaging of microscopic measurements using parallel interferograms generated from a cyclic shear interferometer

Noel-Ivan Toto-Arellano, Victor H. Flores-Muñoz, and Belen Lopez-Ortiz  »View Author Affiliations


Optics Express, Vol. 22, Issue 17, pp. 20185-20192 (2014)
http://dx.doi.org/10.1364/OE.22.020185


View Full Text Article

Enhanced HTML    Acrobat PDF (3373 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a technique which allows us to generate two parallel interferograms with phase shifts of π/2 using a Cyclic Shear Interferometer (CSI) and a polarizing splitter. Because of the use of a CSI, we obtain the derivative phase data map directly, due to its configuration, it is immune to vibrations because the reference wavefront and the object wavefront have a common path; the shearing interferometer is insensitive to temperature and vibration. To obtain the optical phase data map, two interferograms are generated by collocating a polarizing device at the output of the CSI. The optical phase was processed using a Vargas-Quiroga algorithm. Related experimental results obtained for dynamic microscopic transparent samples are presented.

© 2014 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(170.1530) Medical optics and biotechnology : Cell analysis
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 30, 2014
Revised Manuscript: July 28, 2014
Manuscript Accepted: July 29, 2014
Published: August 13, 2014

Virtual Issues
Vol. 9, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Noel-Ivan Toto-Arellano, Victor H. Flores-Muñoz, and Belen Lopez-Ortiz, "Dynamic phase imaging of microscopic measurements using parallel interferograms generated from a cyclic shear interferometer," Opt. Express 22, 20185-20192 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-17-20185


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N.-I. Toto-Arellano, D. I. Serrano-García, A. Martínez-García, G. Rodríguez Zurita, and A. Montes-Pérez, “4D profile of phase objects through the use of a simultaneous phase shifting quasi-common path interferometer,” J. Opt. 13(11), 115502 (2011). [CrossRef]
  2. J. E. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004). [CrossRef]
  3. M. N. Morris, J. Millerd, N. Brock, J. Hayes, and B. Saif, “Dynamic phase-shifting electronic speckle pattern interferometer,” Proc. SPIE 5869, 58691B (2005). [CrossRef]
  4. J. E. Millerd and J. C. Wyant, “Simultaneous phase-shifting Fizeau interferometer,” U.S. Patent 7,057,738 B2 (2006).
  5. B. Barrientos García, A. J. Moore, C. Pérez-López, L. Wang, and T. Tschudi, “Transient deformation measurement with electronic speckle pattern interferometry by use of a holographic optical element for spatial phase stepping,” Appl. Opt. 38(28), 5944–5947 (1999). [CrossRef] [PubMed]
  6. B. Barrientos-García, A. J. Moore, C. Pérez-López, L. Wang, and T. Tschudi, “Spatial phase-stepped interferometry using a holographic optical element,” Opt. Eng. 38(12), 2069–2074 (1999). [CrossRef]
  7. J. C. Wyant, “Dynamic interferometry,” Opt. Photon. News 14(4), 36–41 (2003). [CrossRef]
  8. T. Kiire, S. Nakadate, and M. Shibuya, “Simultaneous formation of four fringes by using a polarization quadrature phase-shifting interferometer with wave plates and a diffraction grating,” Appl. Opt. 47(26), 4787–4792 (2008). [CrossRef] [PubMed]
  9. N. I. Toto-Arellano, G. Rodriguez-Zurita, C. Meneses-Fabian, and J. F. Vázquez-Castillo, “A single-shot phase-shifting radial-shearing interferometer,” J. Opt. A, Pure Appl. Opt. 11(4), 045704 (2009). [CrossRef]
  10. P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters,” Opt. Express 19(3), 1930–1935 (2011). [CrossRef] [PubMed]
  11. Y. Zhu, J. Chen, H. Liu, R. Zhu, and Y. Xiao, “Nonlinear calibrating for phase-shifting adapter with three PZTs,” Microw. Opt. Technol. Lett. 23(4), 209–212 (1999). [CrossRef]
  12. C. Ai and J. C. Wyant, “Effect of piezoelectric transducer nonlinearity on phase shift interferometry,” Appl. Opt. 26(6), 1112–1116 (1987). [CrossRef] [PubMed]
  13. Y.-Y. Cheng and J. C. Wyant, “Phase shifter calibration in phase-shifting interferometry,” Appl. Opt. 24(18), 3049–3052 (1985). [CrossRef] [PubMed]
  14. O. E. Nyakang, G. K. Rurimo, and P. M. Karimi, “Optical phase shift measurements in interferometry,” Int. J. Optoelectron. Eng. 3(2), 13–18 (2013).
  15. J. Vargas, J. A. Quiroga, C. O. S. Sorzano, J. C. Estrada, and J. M. Carazo, “Two-step interferometry by a regularized optical flow algorithm,” Opt. Lett. 36(17), 3485–3487 (2011). [CrossRef] [PubMed]
  16. J. Quiroga and M. Servin, “Isotropic n-dimensional fringe pattern normalization,” Opt. Commun. 224(4–6), 221–227 (2003). [CrossRef]
  17. J. Min, B. Yao, P. Gao, R. Guo, J. Zheng, and T. Ye, “Parallel phase-shifting interferometry based on Michelson-like architecture,” Appl. Opt. 49(34), 6612–6616 (2010). [CrossRef] [PubMed]
  18. A.-H. Phan, M. L. Piao, J.-H. Park, and N. Kim, “Error analysis in parallel two-step phase-shifting method,” Appl. Opt. 52(11), 2385–2393 (2013). [CrossRef] [PubMed]
  19. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31(10), 1414–1416 (2006). [CrossRef] [PubMed]
  20. P. Rastogi, ed., Digital Speckle Pattern Interferometry and Related Techniques (John Wiley, 2001).
  21. W. Steinchen and L. X. Yang, Digital Shearography; Theory and Application of Digital Speckle Pattern Shearing Interferometry (SPIE Press, 2003).
  22. T. W. Ng, “Digital speckle pattern interferometer for combined measurements of out-of-plane displacement and slope,” Opt. Commun. 116(1–3), 31–35 (1995). [CrossRef]
  23. B. Bhaduri, N. K. Mohan, and M. P. Kothiyal, “A dual-function ESPI system for the measurement of out-of-plane displacement and slope,” Opt. Lasers Eng. 44(6), 637–644 (2006). [CrossRef]
  24. N.-I. Toto-Arellano, A. Martínez-García, G. Rodríguez-Zurita, J. A. Rayas-Álvarez, and A. Montes-Perez, “Slope measurement of a phase object using a polarizing phase-shifting high-frequency Ronchi grating interferometer,” Appl. Opt. 49(33), 6402–6408 (2010). [CrossRef] [PubMed]
  25. J. Márquez-Luna, “Técnicas de colecta y preservación de insectos,” Bol. Soc. Entomol. Aragonesa 37, 385–408 (2005).
  26. I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shaked, “Optical phase nanoscopy in red blood cells using low-coherence spectroscopy,” J. Biomed. Opt. 17(10), 101509 (2012). [CrossRef] [PubMed]
  27. H. Pham, H. Ding, N. Sobh, M. Do, S. Patel, and G. Popescu, “Off-axis quantitative phase imaging processing using CUDA: toward real-time applications,” Biomed. Opt. Express 2(7), 1781–1793 (2011). [CrossRef] [PubMed]
  28. V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (1577 KB)     
» Media 2: AVI (61425 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited