OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 17 — Aug. 25, 2014
  • pp: 20936–20947

Coherent perfect absorption of path entangled single photons

Sumei Huang and G. S. Agarwal  »View Author Affiliations

Optics Express, Vol. 22, Issue 17, pp. 20936-20947 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (824 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examine the question of coherent perfect absorption (CPA) of single photons, and more generally, of the quantum fields by a macroscopic medium. We show the CPA of path entangled single photons in a Fabry-Perot interferometer containing an absorptive medium. The frequency of perfect absorption can be controlled by changing the interferometer parameters like the reflectivity and the complex dielectric constant of the material. We exhibit similar results for path entangled photons in micro-ring resonators. For entangled fields like the ones produced by a down converter the CPA aspect is evident in phase sensitive detection schemes such as in measurements of the squeezing spectrum.

© 2014 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(140.4780) Lasers and laser optics : Optical resonators
(260.3160) Physical optics : Interference
(270.1670) Quantum optics : Coherent optical effects
(300.1030) Spectroscopy : Absorption

ToC Category:
Quantum Optics

Original Manuscript: June 11, 2014
Revised Manuscript: July 11, 2014
Manuscript Accepted: July 12, 2014
Published: August 21, 2014

Sumei Huang and G. S. Agarwal, "Coherent perfect absorption of path entangled single photons," Opt. Express 22, 20936-20947 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 1, 173–179 (1986). [CrossRef]
  2. J. E. Kennard, J. P. Hadden, L. Marseglia, I. Aharonovich, S. Castelletto, B. R. Patton, A. Politi, J. C. F. Matthews, A. G. Sinclair, B. C. Gibson, S. Prawer, J. G. Rarity, and J. L. O’Brien, “On-chip manipulation of single photons from a diamond defect,” Phys. Rev. Lett. 111, 213603 (2013). [CrossRef] [PubMed]
  3. V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. Roch, “Experimental realization of Wheelers delayed-choice Gedanken experiment,” Science 315, 966–968 (2007). [CrossRef] [PubMed]
  4. V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. F. Roch, “Delayed-choice test of quantum complementarity with interfering single photons,” Phys. Rev. Lett. 100, 220402 (2008). [CrossRef] [PubMed]
  5. G. Bertocchi, O. Alibart, D. B. Ostrowsky, S. Tanzilli, and P. Baldi, “Single-photon Sagnac interferometer,” J. Phys. B: At. Mol. Opt. Phys. 39, 1011–1016 (2006). [CrossRef]
  6. A. Peruzzo, P. Shadbolt, N. Brunner, S. Popescu, and J. L. O’Brien, “A quantum delayed-choice experiment,” Science 338, 634–637 (2012). [CrossRef] [PubMed]
  7. F. Kaiser, T. Coudreau, P. Milman, D. B. Ostrowsky, and S. Tanzilli, “Entanglement-enabled delayed-choice experiment,” Science 338, 637–640 (2012). [CrossRef] [PubMed]
  8. J. -S. Tang, Y. -L. Li, X. -Y. Xu, G. -Y. Xiang, C. -F. Li, and G. -C. Guo, “Realization of quantum Wheelers delayed-choice experiment,” Nat. Photon. 6, 600–604 (2012). [CrossRef]
  9. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011). [CrossRef]
  10. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413–418 (2001). [CrossRef]
  11. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011). [CrossRef] [PubMed]
  12. A. D. Stone, “Gobbling up light with an antilaser,” Physics Today 64(11), 68–69 (2011). [CrossRef]
  13. S. Dutta-Gupta, “Strong-interaction-mediated critical coupling at two distinct frequencies,” Opt. Lett. 32, 1483–1485 (2007). [CrossRef]
  14. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010). [CrossRef] [PubMed]
  15. C. F. Gmachl, “Laser science: suckers for light,” Nature (London) 467, 37–39 (2010). [CrossRef]
  16. S. Longhi, “Backward lasing yields a perfect absorber,” Physics 3, 61 (2010). [CrossRef]
  17. An early work [G. S. Agarwal, “New method in the theory of surface polaritons,” Phys. Rev. B. 8, 4768–4779 (1973), Sec. III.] presents general conditions under which all the out fields from a linear dielectric medium vanish. In particular, explicit conditions for spherical geometries were given. [CrossRef]
  18. For cylinderical geometries, see a recent work: H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012). [CrossRef] [PubMed]
  19. S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86, 165103 (2012). [CrossRef]
  20. V. Klimov, S. Sun, and G. -Y. Guo, “Coherent perfect nanoabsorbers based on negative refraction,” Opt. Express 20, 13071–13081 (2012). [CrossRef]
  21. M. Pu, Q. Feng, C. Hu, and X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7, 733–738 (2012). [CrossRef]
  22. S. Dutta-Gupta, O. J. F. Martin, S. D. Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20, 1330–1336 (2012). [CrossRef] [PubMed]
  23. S. Dutta-Gupta, R. Deshmukh, A. V. Gopal, O. J. F. Martin, and S. D. Gupta, “Coherent perfect absorption mediated anomalous reflection and refraction,” Opt. Lett. 37, 4452–4454 (2012). [CrossRef] [PubMed]
  24. J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109, 257402 (2012). [CrossRef]
  25. J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Express 18, 25702–25711 (2010). [CrossRef] [PubMed]
  26. J. Yoon, W. J. Park, K. J. Lee, S. H. Song, and R. Magnusson, “Surface-plasmon mediated total absorption of light into silicon,” Opt. Express 19, 20673–20680 (2011). [CrossRef] [PubMed]
  27. P. Ghenuche, G. Vincent, M. Laroche, N. Bardou, R. Haïdar, J. -L. Pelouard, and S. Collin, “Optical extinction in a single layer of nanorods,” Phys. Rev. Lett. 109, 143903 (2012). [CrossRef] [PubMed]
  28. A. Mock, “Low-power all-optical switch based on time-reversed microring laser,” IEEE Photon. J. 4, 2229–2235 (2012). [CrossRef]
  29. R. R. Grote, J. B. Driscoll, and R. M. Osgood, “Integrated optical modulators and switches using coherent perfect loss,” Opt. Lett. 38, 3001–3004 (2013). [CrossRef] [PubMed]
  30. A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002). [CrossRef] [PubMed]
  31. S. Kako, C. Santori, K. Hoshino, S. Gotzinger, Y. Yamamato, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5, 887–892 (2006). [CrossRef] [PubMed]
  32. O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013). [CrossRef] [PubMed]
  33. A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photonadded coherent states of light,” Science 306, 660–662 (2004). [CrossRef] [PubMed]
  34. J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013). [CrossRef]
  35. M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013). [CrossRef] [PubMed]
  36. P. A. M. Dirac, The Principles of Quantum Mechanics, 4th edn. (Oxford University Press, London1958), Page 7.
  37. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987). [CrossRef] [PubMed]
  38. M. Stobińska, G. Alber, and G. Leuchs, “Perfect excitation of a matter qubit by a single photon in free space,” Europhys. Lett. 86, 14007 (2009). [CrossRef]
  39. D. Pinotsi and A. Imamoglu, “Single photon absorption by a single quantum emitter,” Phys. Rev. Lett. 100, 093603 (2008). [CrossRef] [PubMed]
  40. S. Zhang, C. Liu, S. Zhou, C. S. Chuu, M. M. T. Loy, and S. Du, “Coherent control of single-photon absorption and reemission in a two-level atomic ensemble,” Phys. Rev. Lett. 109, 263601 (2012). [CrossRef]
  41. The perfect absorption of an infintely long line source of dipoles by metamaterials has been considered by Guo and his coworkers: G. -Y. Guo, V. Klimov, S. Sun, and W. -J. Zheng, “Metamaterial slab-based super-absorbers and perfect nanodetectors for single dipole sources,” Opt. Express 21(9), 11338–11348 (2013).
  42. G. S. Agarwal and S. D. Gupta, “Reciprocity relations for reflected amplitudes,” Opt. Lett. 27, 1205–1207 (2002). [CrossRef]
  43. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, UK, 1997). [CrossRef]
  44. G. S. Agarwal, Quantum Optics (Cambridge University Press, New York, 2012), Chap. 5. [CrossRef]
  45. U. L. Andersen and T. C. Ralph, “High-fidelity teleportation of continuous-variable quantum states using delocalized single photons,” Phys. Rev. Lett. 111, 050504 (2013). [CrossRef] [PubMed]
  46. J. Zhu, S. K. Ozdemir, Y. -F. Xiao, L. Li, L. He, D. -R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photon. 4, 46–49 (2010). [CrossRef]
  47. D. F. Walls and G. J. Milburn, Quantum Optics (Springer- Verlag, Berlin, 1994), Chap. 7. [CrossRef]
  48. See Ref. [47], p. 124, Eq. (7.18).
  49. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000). [CrossRef] [PubMed]
  50. The Hong-Ou-Mandel effect in the context of metal dielectric structures is now studied—M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013). [CrossRef]
  51. S. D. Gupta and G. S. Agarwal, “Two-photon quantum interference in plasmonics: theory and applications,” Opt. Lett. 39, 390–393 (2014). [CrossRef] [PubMed]
  52. G. S. Agarwal, “Interferences in parametric interactions driven by quantized fields,” Phys. Rev. Lett. 97, 023601 (2006). [CrossRef] [PubMed]
  53. J. Zhang, C. Ye, F. Gao, and M. Xiao, “Phase-sensitive manipulations of a squeezed vacuum field in an optical parametric amplifier inside an optical cavity,” Phys. Rev. Lett. 101, 233602 (2008). [CrossRef] [PubMed]
  54. H. Chen and J. Zhang, “Phase-sensitive manipulations of the two-mode entangled state by a type-II nondegener-ate optical parametric amplifier inside an optical cavity,” Phys. Rev. A 79, 063826 (2009). [CrossRef]
  55. C. W. Gardiner, “Inhibition of atomic phase decays by squeezed light: a direct effect of squeezing,” Phys. Rev. Lett. 56, 1917–1920 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited