OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 17 — Aug. 25, 2014
  • pp: 21079–21087

Directly measuring absolute flow speed by frequency-domain laser speckle imaging

Hao Li, Qi Liu, Hongyang Lu, Yao Li, Hao F. Zhang, and Shanbao Tong  »View Author Affiliations


Optics Express, Vol. 22, Issue 17, pp. 21079-21087 (2014)
http://dx.doi.org/10.1364/OE.22.021079


View Full Text Article

Enhanced HTML    Acrobat PDF (1900 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser speckle contrast imaging (LSCI) is a simple yet powerful tool to image blood flow. However, traditional LSCI has limited quantitative analysis capabilities due to various factors affecting flow speed evaluation, including illumination intensity, scattering from static tissues, and mathematical complexity of blood flow estimation. Here, we present a frequency-domain laser speckle imaging (FDLSI) method that can directly measure absolute flow speed. In phantom experiments, the measured flow speed agreed well with the preset actual values (10% deviation). Furthermore, in vivo experiments demonstrated that FDLSI was minimally affected by illumination condition changes.

© 2014 Optical Society of America

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(120.6150) Instrumentation, measurement, and metrology : Speckle imaging
(120.7250) Instrumentation, measurement, and metrology : Velocimetry
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 9, 2014
Revised Manuscript: July 26, 2014
Manuscript Accepted: August 2, 2014
Published: August 22, 2014

Virtual Issues
Vol. 9, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Hao Li, Qi Liu, Hongyang Lu, Yao Li, Hao F. Zhang, and Shanbao Tong, "Directly measuring absolute flow speed by frequency-domain laser speckle imaging," Opt. Express 22, 21079-21087 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-17-21079


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. F. Fercher and J. D. Briers, “Flow visualization by means of single exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981). [CrossRef]
  2. L. M. Richards, S. M. S. Kazmi, J. L. Davis, K. E. Olin, and A. K. Dunn, “Low-cost laser speckle contrast imaging of blood flow using a webcam,” Biomed. Opt. Express 4(10), 2269–2283 (2013). [CrossRef] [PubMed]
  3. O. Yang and B. Choi, “Laser speckle imaging using a consumer-grade color camera,” Opt. Lett. 37(19), 3957–3959 (2012). [CrossRef] [PubMed]
  4. A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18(9), 090501 (2013). [CrossRef] [PubMed]
  5. A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng. 40(2), 367–377 (2012). [CrossRef] [PubMed]
  6. J. C. Ramirez-San-Juan, E. Mendez-Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, and B. Choi, “Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics,” Biomed. Opt. Express 4(10), 1883–1889 (2013). [CrossRef] [PubMed]
  7. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010). [CrossRef] [PubMed]
  8. B. J. Berne, Dynamic light scattering: With applications to chemistry, biology and physics (Courier Dover Publications, 1976).
  9. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005). [CrossRef]
  10. D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008). [CrossRef] [PubMed]
  11. D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: Theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013). [CrossRef] [PubMed]
  12. D. D. Duncan, S. J. Kirkpatrick, and R. K. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25(1), 9–15 (2008). [CrossRef] [PubMed]
  13. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. J. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008). [CrossRef] [PubMed]
  14. S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using multi-exposure speckle imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013). [CrossRef] [PubMed]
  15. O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: Multiple-exposure laser speckle analysis generates laser doppler-like spectra,” J. Biomed. Opt. 15(2), 027015 (2010). [CrossRef] [PubMed]
  16. J. Senarathna, A. Rege, N. Li, and N. V. Thakor, “Laser speckle contrast imaging: Theory, instrumentation and applications,” IEEE Rev. Biomed. Eng. 6, 99–110 (2013). [CrossRef] [PubMed]
  17. J. W. Goodman, Speckle phenomena in optics: Theory and applications (Roberts and Company Publishers, 2007).
  18. R. Bonner and R. Nossal, “Model for laser doppler measurements of blood flow in tissue,” Appl. Opt. 20(12), 2097–2107 (1981). [CrossRef] [PubMed]
  19. J. D. Briers, “Laser doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001). [CrossRef] [PubMed]
  20. J. Lim, H. F. Ding, M. Mir, R. Y. Zhu, K. Tangella, and G. Popescu, “Born approximation model for light scattering by red blood cells,” Biomed. Opt. Express 2(10), 2784–2791 (2011). [CrossRef] [PubMed]
  21. J. D. Briers and S. Webster, “Laser speckle contrast analysis (lasca): A nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996). [CrossRef] [PubMed]
  22. P. Miao, H. Y. Lu, Q. Liu, Y. Li, and S. B. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16(9), 090502 (2011). [CrossRef] [PubMed]
  23. J. W. Goodman, Introduction to fourier optics (Roberts and Company Publishers, 2005).
  24. A. Oulamara, G. Tribillon, and J. Duvernoy, “Biological-activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36(2), 165–179 (1989). [CrossRef]
  25. J. Briers and A. Fercher, “Laser speckle technique for the visualization of retinal blood flow,” in The Max Born Centenary Conference(International Society for Optics and Photonics, 1983), pp. 22–28. [CrossRef]
  26. S. M. Daly and M. J. Leahy, “‘Go with the flow ’: A review of methods and advancements in blood flow imaging,” J Biophoton. 6(3), 217–255 (2013). [CrossRef] [PubMed]
  27. Y. P. Ma, A. Koo, H. C. Kwan, and K. K. Cheng, “On-line measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat,” Microvasc. Res. 8(1), 1–13 (1974). [CrossRef] [PubMed]
  28. H. Y. Cheng and T. Q. Duong, “Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging,” Opt. Lett. 32(15), 2188–2190 (2007). [CrossRef] [PubMed]
  29. W. Maï, C. T. Badea, C. T. Wheeler, L. W. Hedlund, and G. A. Johnson, “Effects of breathing and cardiac motion on spatial resolution in the microscopic imaging of rodents,” Magn. Reson. Med. 53(4), 858–865 (2005). [CrossRef] [PubMed]
  30. R. Z. Bi, J. Dong, and K. Lee, “Deep tissue flowmetry based on diffuse speckle contrast analysis,” Opt. Lett. 38(9), 1401–1403 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited