OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 17 — Aug. 25, 2014
  • pp: 21088–21105

Modal amplification in active waveguides with hyperbolic dispersion at telecommunication frequencies

Joseph S. T. Smalley, Felipe Vallini, Boubacar Kanté, and Yeshaiahu Fainman  »View Author Affiliations

Optics Express, Vol. 22, Issue 17, pp. 21088-21105 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1668 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method for studying amplification of electromagnetic modes in active, circularly symmetric waveguides with hyperbolic dispersion. Using this method, we obtain a closed-form expression for the modal threshold condition. We find that modal amplification is possible in a region of the radius-wavelength phase-space with small enough radius so that propagation of the mode is permitted while modal energy and phase counter-propagate. At telecommunication frequencies, such a situation is achievable only when the absolute value of the real metal permittivity exceeds that of the active dielectric. We validate our theoretical conclusions with numerical simulations that explain the threshold condition in terms of an energy balance between the longitudinal and radial components of the electric field.

© 2014 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(230.7370) Optical devices : Waveguides
(250.5230) Optoelectronics : Photoluminescence
(160.3918) Materials : Metamaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: June 11, 2014
Manuscript Accepted: August 11, 2014
Published: August 22, 2014

Joseph S. T. Smalley, Felipe Vallini, Boubacar Kanté, and Yeshaiahu Fainman, "Modal amplification in active waveguides with hyperbolic dispersion at telecommunication frequencies," Opt. Express 22, 21088-21105 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008). [CrossRef] [PubMed]
  2. Z. Jacob, “The classical and quantum optics of hyperbolic metamaterials,” Thesis, Purdue University (2010).
  3. V. Veselago, “The electrodynamics of substances with simultaneously negative values of epsilon and mu,” Sov. Phys. Usp. 10(4), 509–514 (1968). [CrossRef]
  4. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010). [CrossRef] [PubMed]
  5. V. Podolskiy and E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71(20), 201101 (2005). [CrossRef]
  6. C. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012). [CrossRef]
  7. M. Noginov, “Metamaterials with optical gain,” in Tutorials in Metamaterials, M. Noginov and V. Podolskiy, eds. (CRC, 2012), pp. 129–161.
  8. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010). [CrossRef] [PubMed]
  9. X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19(25), 25242–25254 (2011). [CrossRef] [PubMed]
  10. R. Savelev, I. Shadrivov, P. Belov, N. Rosanov, S. Fedorov, A. Sukhorukov, and Y. Kivshar, “Loss compensation in metal-dielectric layered metamaterials,” Phys. Rev. B 87(11), 115139 (2013). [CrossRef]
  11. R. Shersby-Harvie, L. Mullett, W. Walkinshaw, J. Bell, and B. Loach, “A theoretical and experimental investigation of anisotropic-dielectric-loaded linear electron accelerators,” Proc. IEE 104B, 273–290 (1957).
  12. V. M. Agranovich and V. E. Kravtsov, “Notes on crystal optics of superlattices,” Solid State Commun. 55(1), 85–90 (1985). [CrossRef]
  13. C. Chang, “Circular waveguides lined with artificial anisotropic dielectrics,” IEEE Trans. Microw. Theory Tech. 20(8), 517–523 (1972). [CrossRef]
  14. W. Yan, M. Wubs, and N. Mortensen, “Hyperbolic metamaterials: Nonlocal response regularizes broadband supersingularity,” Phys. Rev. B 86(20), 205429 (2012). [CrossRef]
  15. C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C 115(40), 19470–19475 (2011). [CrossRef]
  16. J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90(19), 191109 (2007). [CrossRef]
  17. L. Coldren, S. Corzine, and M. Masanovic, “Gain and current relations,” in Diode lasers and photonic integrated circuits, (Wiley, 2012), pp. 157–246.
  18. J. Smalley, Q. Gu, and Y. Fainman, “Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers,” IEEE J. Quantum Electron. 50(3), 175–185 (2014). [CrossRef]
  19. G. Naik, V. Shalaev, and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi (RRL) 4, 295–297 (2010).
  20. C. Riley, T. Kieu, J. Smalley, S. Pan, S. Kim, K. Post, A. Kargar, D. Basov, X. Pan, Y. Fainman, D. Wang, and D. Sirbuly, “Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition,” submitted to Phys. Stat. Sol. (RRL) (2014).
  21. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012). [PubMed]
  22. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013). [CrossRef] [PubMed]
  23. G. Naik and A. Boltasseva, “A comparitive study of semiconductor-based plasmonic metamaterials,” arXiv, < http://arxiv.org/abs/1108.1531 > (2011).
  24. P. Johnson and R. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  25. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33(11), 1261–1263 (2008). [CrossRef] [PubMed]
  26. J. S. Smalley, M. W. Puckett, and Y. Fainman, “Invariance of optimal composite waveguide geometries with respect to permittivity of the metal cladding,” Opt. Lett. 38(23), 5161–5164 (2013). [CrossRef] [PubMed]
  27. A. Govyadinov and V. Podolskiy, “Metamaterial photonic funnels for subdiffraction light compression and propagation,” Phys. Rev. B 73(15), 155108 (2006). [CrossRef]
  28. V. Podolskiy, “Anisotropic and hyperbolic metamaterials,” in Tutorials in Metamaterials, M. Noginov and V. Podolskiy, eds. (CRC, 2012), pp. 163–207.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited