OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 18 — Sep. 8, 2014
  • pp: 21175–21184

Hybrid grating reflector with high reflectivity and broad bandwidth

Alireza Taghizadeh, Gyeong Cheol Park, Jesper Mørk, and Il-Sug Chung  »View Author Affiliations

Optics Express, Vol. 22, Issue 18, pp. 21175-21184 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4700 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We suggest a new type of grating reflector denoted hybrid grating (HG) which shows large reflectivity in a broad wavelength range and has a structure suitable for realizing a vertical cavity laser with ultra-small modal volume. The properties of the grating reflector are investigated numerically and explained. The HG consists of an un-patterned III–V layer and a Si grating. The III–V layer has a thickness comparable to the grating layer, introduces more guided mode resonances and significantly increases the bandwidth of the reflector compared to the well-known high-index-contrast grating (HCG). By using an active III–V layer, a laser can be realized where the gain region is integrated into the mirror itself.

© 2014 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(140.7090) Lasers and laser optics : Ultrafast lasers
(230.4040) Optical devices : Mirrors
(230.5298) Optical devices : Photonic crystals
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: July 17, 2014
Revised Manuscript: August 15, 2014
Manuscript Accepted: August 15, 2014
Published: August 25, 2014

Alireza Taghizadeh, Gyeong Cheol Park, Jesper Mørk, and Il-Sug Chung, "Hybrid grating reflector with high reflectivity and broad bandwidth," Opt. Express 22, 21175-21184 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004). [CrossRef]
  2. C. F. R. Mateus, M. C. Y. Huang, L. Chen, and C. J. Chang-Hasnain, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004). [CrossRef]
  3. M. C.Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007). [CrossRef]
  4. S. Boutami, B. Benbakir, J. L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91, 071105 (2007). [CrossRef]
  5. M. C.Y. Huang, Y. Zhou, and Connie J. Chang-Hasnain, “Nano electro-mechanical optoelectronic tunable VCSEL,” Opt. Express 15, 1222 (2007). [CrossRef] [PubMed]
  6. I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46(9), 1245–1253 (2010). [CrossRef]
  7. I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photon. Technol. Lett. 20(2), 105–107 (2008). [CrossRef]
  8. I.-S. Chung and J. Mørk, “Silicon-photonics light source realized by III–V/Si-grating-mirror laser,” Appl. Phys. Lett. 97(15), 151–153 (2010). [CrossRef]
  9. C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. Fedeli, and P. Viktorovitch, “CMOS-compatible ultra-compact 1.55 μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett. 24(6), 455–457 (2012). [CrossRef]
  10. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010). [CrossRef]
  11. L. Carletti, R. Malureanu, J. Mørk, and I.-S. Chung, “High-index-contrast grating reflector with beam steering ability for the transmitted beam,” Opt. Express 19(23), 23567 (2011). [CrossRef] [PubMed]
  12. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008). [CrossRef] [PubMed]
  13. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997). [CrossRef]
  14. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004). [CrossRef] [PubMed]
  15. P. Lalanne, J. P. Hugonin, and P. Chavel, “Optical properties of deep lamellar gratings: a coupled Bloch-mode insight,” J. Lightwave Technol. 24(6), 2442–2449 (2006). [CrossRef]
  16. V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express 20(10), 10888–10895 (2012). [CrossRef] [PubMed]
  17. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995). [CrossRef]
  18. G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13(5), 1019–1023 (1996). [CrossRef]
  19. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13(5), 1024–1035 (1996). [CrossRef]
  20. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18(11), 2865–2875 (2001). [CrossRef]
  21. T. Estruch, F. Pardo, B. Portier, J. Jaeck, S. Derelle, and R. Haidar, “Masons rule and Signal Flow Graphs applied to subwavelength resonant structures,” Opt. Express 20(24), 27155–27162 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited