OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 18 — Sep. 8, 2014
  • pp: 21589–21599

A 4-way wavelength demultiplexer based on the plasmonic broadband slow wave system

Yong Jin Zhou and Bao Jia Yang  »View Author Affiliations

Optics Express, Vol. 22, Issue 18, pp. 21589-21599 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (5098 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a broadband slow wave system based on the thin metal-insulator-metal (MIM) graded grating structure composed of two corrugated metal strips with periodic array of grooves on a thin dielectric substrate. The guided spoof surface plasmon polaritons (SSPPs) at different frequencies can be localized at different positions along the ultrathin MIM grating. By introducing specially designed non-corrugated MIM branches with specific lengths at the locations where the EM waves are trapped, the trapped EM waves can be released and propagate along these branches. A 4-way wavelength demultiplexer based on such plasmonic broadband slow wave system is then demonstrated and fabricated. To improve the isolations between different branches at lower frequencies, band-reject filters are inserted at the front of some MIM branches. The measurements and the simulation results have shown very good agreements, which validate the feasibility of the 4-way wavelength demultiplexer.

© 2014 Optical Society of America

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: July 14, 2014
Revised Manuscript: August 24, 2014
Manuscript Accepted: August 24, 2014
Published: August 29, 2014

Yong Jin Zhou and Bao Jia Yang, "A 4-way wavelength demultiplexer based on the plasmonic broadband slow wave system," Opt. Express 22, 21589-21599 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001). [CrossRef] [PubMed]
  2. M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004). [CrossRef] [PubMed]
  3. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004). [CrossRef] [PubMed]
  4. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22(5), 1062 (2005). [CrossRef]
  5. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008). [CrossRef]
  6. X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013). [CrossRef] [PubMed]
  7. X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Integrated Photonic Electromagnetic Field Sensor Based on Broadband Bowtie Antenna Coupled Silicon Organic Hybrid Modulator,” J. Lightwave Technol. (to be published).
  8. M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001). [CrossRef] [PubMed]
  9. K. Lee and N. M. Lawandy, “Optically induced pulse delay in a solid-state Raman amplifier,” Appl. Phys. Lett. 78(6), 703–705 (2001). [CrossRef]
  10. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005). [CrossRef] [PubMed]
  11. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007). [CrossRef] [PubMed]
  12. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005). [CrossRef] [PubMed]
  13. T. Jiang, Q. Zhang, and Y. Feng, “Compensating loss with gain in slow-light propagation along slab waveguide with anisotropic metamaterial cladding,” Opt. Lett. 34(24), 3869–3871 (2009). [CrossRef] [PubMed]
  14. J. He, Y. Jin, Z. Hong, and S. He, “Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding,” Opt. Express 16(15), 11077–11082 (2008). [CrossRef] [PubMed]
  15. V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Experimental observation of the trapped rainbow,” Appl. Phys. Lett. 96(21), 211121 (2010). [CrossRef]
  16. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004). [CrossRef] [PubMed]
  17. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  18. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  19. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  20. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008). [CrossRef] [PubMed]
  21. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009). [CrossRef] [PubMed]
  22. L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett. 97(15), 153115 (2010). [CrossRef]
  23. Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011). [CrossRef] [PubMed]
  24. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005). [CrossRef]
  25. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009). [CrossRef]
  26. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008). [CrossRef] [PubMed]
  27. A. Hosseini and Y. Massoud, “Nanoscale surface Plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007). [CrossRef]
  28. L. Yang, C. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35(24), 4184–4186 (2010). [CrossRef] [PubMed]
  29. M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107(20), 207401 (2011). [CrossRef] [PubMed]
  30. G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101(1), 013111 (2012). [CrossRef]
  31. C. Zeng and Y. Cui, “Rainbow trapping of surface plasmon polariton waves in metal-insulator-metal graded grating waveguide,” Opt. Commun. 290, 188–191 (2013). [CrossRef]
  32. G. Wang, H. Lu, and X. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20(19), 20902–20907 (2012). [CrossRef] [PubMed]
  33. X. X. Han, “Dual-channel dispersionless slow light based on plasmon-induced transparency,” Appl. Opt. 53(1), 9–13 (2014). [CrossRef] [PubMed]
  34. M. A. Kats, D. Woolf, R. Blanchard, N. Yu, and F. Capasso, “Spoof plasmon analogue of metal-insulator-metal waveguides,” Opt. Express 19(16), 14860–14870 (2011). [CrossRef] [PubMed]
  35. J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide,” J. Appl. Phys. 106(10), 103715 (2009). [CrossRef]
  36. B. Wang, Y. Jin, and S. He, “Design of subwavelength corrugated metal waveguides for slow waves at terahertz frequencies,” Appl. Opt. 47(21), 3694–3700 (2008). [CrossRef] [PubMed]
  37. L. Chen, T. Zhang, X. Li, and G. P. Wang, “Plasmonic rainbow trapping by a graphene monolayer on a dielectric layer with a silicon grating substrate,” Opt. Express 21(23), 28628–28637 (2013). [CrossRef] [PubMed]
  38. X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013). [CrossRef] [PubMed]
  39. X. Y. Liu, Y. J. Feng, B. Zhu, J. M. Zhao, and T. Jiang, “High-order modes of spoof surface plasmonic wave transmission on thin metal film structure,” Opt. Express 21(25), 31155–31165 (2013). [CrossRef] [PubMed]
  40. X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014). [CrossRef]
  41. A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007). [CrossRef] [PubMed]
  42. J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express 18(11), 11111–11116 (2010). [CrossRef] [PubMed]
  43. F. Hu, H. Yi, and Z. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett. 36(8), 1500–1502 (2011). [CrossRef] [PubMed]
  44. H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19(14), 12885–12890 (2011). [CrossRef] [PubMed]
  45. Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Opt. Express 19(15), 13831–13838 (2011). [CrossRef] [PubMed]
  46. G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19(4), 3513–3518 (2011). [CrossRef] [PubMed]
  47. Y. Chen, J. Gu, X. C. Xie, and W. Zhang, “Trapping and releasing light by mechanical implementation in metamaterial waveguides,” J. Opt. Soc. Am. A 28(2), 272–277 (2011). [CrossRef] [PubMed]
  48. L. Xiao, L. Chen, Y. Li, J. Liu, and K. Wang, “High-speed rainbow trapping and release by mechanical approaches in the terahertz regime,” J. Mod. Opt. 59(8), 686–692 (2012). [CrossRef]
  49. K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines (Artech House, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited