OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 18 — Sep. 8, 2014
  • pp: 21600–21617

Mid-IR hyperspectral imaging of laminar flames for 2-D scalar values

Michael R. Rhoby, David L. Blunck, and Kevin C. Gross  »View Author Affiliations


Optics Express, Vol. 22, Issue 18, pp. 21600-21617 (2014)
http://dx.doi.org/10.1364/OE.22.021600


View Full Text Article

Enhanced HTML    Acrobat PDF (2595 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work presents a new emission-based measurement which permits quantification of two-dimensional scalar distributions in laminar flames. A Michelson-based Fourier-transform spectrometer coupled to a mid-infrared camera (1.5 μm to 5.5 μm) obtained 256 × 128pixel hyperspectral flame images at high spectral (δν̃ = 0.75cm−1) and spatial (0.52 mm) resolutions. The measurements revealed line and band emission from H2O, CO2, and CO. Measurements were collected from a well-characterized partially-premixed ethylene (C2H4) flame produced on a Hencken burner at equivalence ratios, Φ, of 0.8, 0.9, 1.1, and 1.3. After describing the instrument and novel calibration methodology, analysis of the flames is presented. A single-layer, line-by-line radiative transfer model is used to retrieve path-averaged temperature, H2O, CO2 and CO column densities from emission spectra between 2.3 μm to 5.1 μm. The radiative transfer model uses line intensities from the latest HITEMP and CDSD-4000 spectroscopic databases. For the Φ = 1.1 flame, the spectrally estimated temperature for a single pixel 10 mm above burner center was T = (2318 ± 19)K, and agrees favorably with recently reported laser absorption measurements, T = (2348 ± 115)K, and a NASA CEA equilibrium calculation, T = 2389K. Near the base of the flame, absolute concentrations can be estimated, and H2O, CO2, and CO concentrations of (12.5 ± 1.7) %, (10.1 ± 1.0) %, and (3.8 ± 0.3) %, respectively, compared favorably with the corresponding CEA values of 12.8%, 9.9% and 4.1%. Spectrally-estimated temperatures and concentrations at the other equivalence ratios were in similar agreement with measurements and equilibrium calculations. 2-D temperature and species column density maps underscore the Φ-dependent chemical composition of the flames. The reported uncertainties are 95% confidence intervals and include both statistical fit errors and the propagation of systematic calibration errors using a Monte Carlo approach. Systematic errors could warrant a factor of two increase in reported uncertainties. This work helps to establish IFTS as a valuable combustion diagnostic tool.

© 2014 Optical Society of America

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(280.2470) Remote sensing and sensors : Flames
(300.2140) Spectroscopy : Emission
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Imaging Systems

History
Original Manuscript: July 9, 2014
Revised Manuscript: August 15, 2014
Manuscript Accepted: August 15, 2014
Published: August 29, 2014

Citation
Michael R. Rhoby, David L. Blunck, and Kevin C. Gross, "Mid-IR hyperspectral imaging of laminar flames for 2-D scalar values," Opt. Express 22, 21600-21617 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-18-21600


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Kohse-Hoinghaus and J. B. Jeffries, eds. Applied Combustion Diagnostics (Taylor and Francis, 2002).
  2. P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures,” Combust. Flame85, 309–318 (1991). [CrossRef]
  3. P. R. Solomon, P. E. Best, R. M. Carangelo, J. R. Markham, and P.-L. Chien, “FT-IR emission/transmission spectroscopy for in situ combustion diagnostics,” Proc. Combust. Instit.21, 1763–1771 (1988). [CrossRef]
  4. D. Blunck, S. Basu, Y. Zheng, V. Katta, and J. Gore, “Simultaneous water vapor concentration and temperature measurements in unsteady hydrogen flames,” Proc. Combust. Instit.32, 2527–2534 (2009). [CrossRef]
  5. B. A. Rankin, D. L. Blunck, and J. P. Gore, “Infrared imaging and spatiotemporal radiation properties of a turbulent nonpremixed jet flame and plume,” J. Heat Transfer135(2), 021201 (2013).
  6. K. Biswas, Y. Zheng, C. H. Kim, and J. Gore, “Stochastic time series analysis of pulsating buoyant pool fires,” Proc. Combust. Instit.31, 2581–2588 (2007). [CrossRef]
  7. L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express17(10), 8602– 8613 (2009). [CrossRef] [PubMed]
  8. K. C. Gross, K. C. Bradley, and G. P. Perram, “Remote identification and quantification of industrial smokestack effluents via imaging Fourier-transform spectroscopy,” Environ. Sci. Technol.44, 9390–9397 (2010). [CrossRef] [PubMed]
  9. J. L. Harley, B. A. Rankin, D. L. Blunck, J. P. Gore, and K. C. Gross, “Imaging Fourier-transform spectrometer measurements of a turbulent nonpremixed jet flame,” Opt. Lett.39(8), 2350–2353 (2014). [CrossRef] [PubMed]
  10. R. I. Acosta, K. C. Gross, G. P. Perram, S. Johnson, L. Dao, D. Medina, R. Roybal, and P. Black, “Gas phase plume from laser irradiated fiberglass reinforced polymers via imaging Fourier-transform spectroscopy,” Appl. Spectrosc.68(7), 723–732 (2014). [CrossRef] [PubMed]
  11. M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame131, 98–109 (2002). [CrossRef]
  12. T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser based UV absorption sensor,” App. Opt.44, 6729–6740 (2005). [CrossRef]
  13. K. C. Gross, P. Tremblay, K. C. Bradley, M. Chamberland, V. Farley, and G. P. Perram, “Instrument calibration and lineshape modeling for ultraspectral imagery measurements of industrial smokestack emissions,” Proc. SPIE7695, 769516 (2010).
  14. V. Farley, A. Vallières, M. Chamberland, A. Villemaire, and J. F. Legault, “Performance of the FIRST, a longwave infrared hyperspectral imaging sensor,” Proc. SPIE6398, 6398T (2006).
  15. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. Laporte, W. L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the high-resolution interferometer sounder,” App. Opt.27, 3210–3218 (1988). [CrossRef]
  16. P. Tremblay, K. C. Gross, V. Farley, M. Chamberland, A. Villemaire, and G. P. Perram, “Understanding and overcoming scene-change artifacts in imaging Fourier-transform spectroscopy of turbulent jet engine exhaust,” Proc. SPIE7457, 74570F (2009).
  17. L. Mertz, Transformations in Optics (Wiley-Interscience, 1965).
  18. D. B. Chase, “Phase correction in FT-IR,” Appl. Spectrosc.36(3), 240–244 (1982). [CrossRef]
  19. S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic Press, 2001).
  20. L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer111, 2139–2150 (2010). [CrossRef]
  21. S. A. Tashkun and V. I. Perevalov, “CDSD-4000: high-resolution, high-temperature carbon dioxide spectroscopic databank,” J. Quant. Spectrosc. Radiat. Transfer112, 1403–1410 (2011). [CrossRef]
  22. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer60(5), 665–710 (1998). [CrossRef]
  23. S. Gordon and B. J. McBride, “Computer program for calculation of complex chemical equilibrium compositions and applications,” RP-1311, NASA (1996).
  24. S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part I: Experimental setup and source characterization,” J. Quant. Spectrosc. Radiat. Transfer113, 1–13 (2012). [CrossRef]
  25. S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part II: Experimental results and comparisons with spectroscopic databases,” J. Quant. Spectrosc. Radiat. Transfer113, 14–25 (2012). [CrossRef]
  26. R. I. Acosta, “Imaging Fourier transform spectroscopy of the boundary layer plume from laser irradiated polymers and carbon materials,” Ph.D. dissertation, AFIT-ENP-DS-14-J-8, Air Force Institute of Technology (2014).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited