OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 18 — Sep. 8, 2014
  • pp: 21618–21625

Tailoring single-cycle electromagnetic pulses in the 2–9 THz frequency range using DAST/SiO2 multilayer structures pumped at Ti:sapphire wavelength

Andrei G. Stepanov, Andrii Rogov, Luigi Bonacina, Jean-Pierre Wolf, and Christoph P. Hauri  »View Author Affiliations


Optics Express, Vol. 22, Issue 18, pp. 21618-21625 (2014)
http://dx.doi.org/10.1364/OE.22.021618


View Full Text Article

Enhanced HTML    Acrobat PDF (1182 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a numerical parametric study of single-cycle electromagnetic pulse generation in a DAST/SiO2 multilayer structure via collinear optical rectification of 800 nm femtosecond laser pulses. It is shown that modifications of the thicknesses of the DAST and SiO2 layers allow tuning of the average frequency of the generated THz pulses in the frequency range from 3 to 6 THz. The laser-to-THz energy conversion efficiency in the proposed structures is compared with that in a bulk DAST crystal and a quasi-phase-matching periodically poled DAST crystal and shows significant enhancement.

© 2014 Optical Society of America

OCIS Codes
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(260.3060) Physical optics : Infrared
(350.4010) Other areas of optics : Microwaves
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Terahertz Optics

History
Original Manuscript: July 2, 2014
Revised Manuscript: August 14, 2014
Manuscript Accepted: August 23, 2014
Published: August 29, 2014

Citation
Andrei G. Stepanov, Andrii Rogov, Luigi Bonacina, Jean-Pierre Wolf, and Christoph P. Hauri, "Tailoring single-cycle electromagnetic pulses in the 2–9 THz frequency range using DAST/SiO2 multilayer structures pumped at Ti:sapphire wavelength," Opt. Express 22, 21618-21625 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-18-21618


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Schirmer, M. Fujio, M. Minami, J. Miura, T. Araki, and T. Yasui, “Biomedical applications of a real-time terahertz color scanner,” Biomed. Opt. Express1(2), 354–366 (2010). [CrossRef] [PubMed]
  2. H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt., doi:. [CrossRef]
  3. C. Vicario, C. Ruchert, F. Ardana-Lamas, P. M. Derlet, B. Tudu, J. Luning, and C. P. Hauri, “Off-resonant magnetization dynamics phase-locked to an intense phase-stable terahertz transient,” Nat. Photonics7(9), 720–723 (2013). [CrossRef]
  4. N. Stojanovic and M. Drescher, “Accelerator- and laser-based sources of high-field terahertz pulses,” J. Phys. At. Mol. Opt. Phys.46(19), 192001 (2013). [CrossRef]
  5. E. Roman, J. R. Yates, M. Veithen, D. Vanderbilt, and I. Souza, “Ab initio study of the nonlinear optics of III-V semiconductors in the terahertz regime,” Phys. Rev. B74(24), 245204 (2006). [CrossRef]
  6. A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, and J.-P. Wolf, “Mobile source of high-energy single-cycle terahertz pulses,” Appl. Phys. B101(1–2), 11–14 (2010). [CrossRef]
  7. J. A. Fülöp and J. Hebling, Applications of Tilted-Pulse-Front Excitation; in Recent Optical and Photonic Technologies, edited by K. Y. Kim (NTECH, 2010).
  8. J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B78(5), 593–599 (2004). [CrossRef]
  9. C. Vicario, B. Monoszlai, Cs. Lombosi, A. Mareczko, A. Courjaud, J. A. Fülöp, and C. P. Hauri, “Pump pulse width and temperature effects in lithium niobate for efficient THz generation,” Opt. Lett.38(24), 5373–5376 (2013). [CrossRef] [PubMed]
  10. S.-W. Huang, E. Granados, W. R. Huang, K.-H. Hong, L. E. Zapata, and F. X. Kärtner, “High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate,” Opt. Lett.38(5), 796–798 (2013). [CrossRef] [PubMed]
  11. K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “High-power broadband terahertz generation via two-color photoionization in gases,” IEEE J. Quantum Electron.48(6), 797–805 (2012). [CrossRef]
  12. C. P. Hauri, C. Ruchert, C. Vicario, and F. Ardana, “Strong-field single-cycle THz pulses generated in an organic crystal,” Appl. Phys. Lett.99(16), 161116 (2011). [CrossRef]
  13. C. Ruchert, C. Vicario, and C. P. Hauri, “Scaling submillimeter single-cycle transients toward megavolts per centimeter field strength via optical rectification in the organic crystal OH1,” Opt. Lett.37(5), 899–901 (2012). [CrossRef] [PubMed]
  14. C. Ruchert, C. Vicario, and C. P. Hauri, “Spatiotemporal focusing dynamics of intense supercontinuum THz pulses,” Phys. Rev. Lett.110(12), 123902 (2013). [CrossRef] [PubMed]
  15. C. Vicario, C. Ruchert, and C. P. Hauri, “High field broadband THz generation in organic materials,” J. Mod. Opt.2013, 1–6 (2013). [CrossRef]
  16. C. Vicario, B. Monoszlai, and C. P. Hauri, “GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal,” Phys. Rev. Lett.112(21), 213901 (2014). [CrossRef]
  17. B. Monoszlai, C. Vicario, M. Jazbinsek, and C. P. Hauri, “High-energy terahertz pulses from organic crystals: DAST and DSTMS pumped at Ti:sapphire wavelength,” Opt. Lett.38(23), 5106–5109 (2013). [CrossRef] [PubMed]
  18. A. G. Stepanov, L. Bonacina, and J.-P. Wolf, “DAST/SiO2 multilayer structure for efficient generation of 6 THz quasi-single-cycle electromagnetic pulses,” Opt. Lett.37(13), 2439–2441 (2012). [CrossRef] [PubMed]
  19. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962). [CrossRef]
  20. Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett.76(18), 2505–2507 (2000). [CrossRef]
  21. F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4-N-methylstilbazolium tosylate,” Appl. Phys. Lett.69(1), 13–15 (1996). [CrossRef]
  22. P. D. Cunningham and L. M. Hayden, “Optical properties of DAST in the THz range,” Opt. Express18(23), 23620–23625 (2010). [CrossRef] [PubMed]
  23. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun.163(1–3), 95–102 (1999). [CrossRef]
  24. E. E. Russel and E. E. Bell, “Measurement of the optical constants of crystal quartz in the far infrared with the asymmetric Fourier-transform method,” JOSA57(3), 341–348 (1967). [CrossRef]
  25. M. Thakur, J. Xu, A. Bhowmik, and L. Zhou, “Single-pass thin-film electro-optic modulator based on an organic molecular salt,” Appl. Phys. Lett.74(5), 635–637 (1999). [CrossRef]
  26. S. Brahadeeswaran, Y. Takahashi, M. Yoshimura, M. Tani, S. Okada, S. Nashima, Y. Mori, M. Hangyo, H. Ito, and T. Sasaki, “Growth of ultrathin and highly efficient organic nonlinear optical crystal 4′-dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate for enhanced terahertz efficiency at higher frequencies,” Cryst. Growth Des.13(2), 415–421 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited