OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 18 — Sep. 8, 2014
  • pp: 21657–21678

Improved near-infrared ocean reflectance correction algorithm for satellite ocean color data processing

Lide Jiang and Menghua Wang  »View Author Affiliations


Optics Express, Vol. 22, Issue 18, pp. 21657-21678 (2014)
http://dx.doi.org/10.1364/OE.22.021657


View Full Text Article

Enhanced HTML    Acrobat PDF (2636 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new approach for the near-infrared (NIR) ocean reflectance correction in atmospheric correction for satellite ocean color data processing in coastal and inland waters is proposed, which combines the advantages of the three existing NIR ocean reflectance correction algorithms, i.e., Bailey et al. (2010) [Opt. Express 18, 7521 (2010) Appl. Opt. 39, 897 (2000) Opt. Express 20, 741 (2012)], and is named BMW. The normalized water-leaving radiance spectra nLw(λ) obtained from this new NIR-based atmospheric correction approach are evaluated against those obtained from the shortwave infrared (SWIR)-based atmospheric correction algorithm, as well as those from some existing NIR atmospheric correction algorithms based on several case studies. The scenes selected for case studies are obtained from two different satellite ocean color sensors, i.e., the Moderate Resolution Imaging Spectroradiometer (MODIS) on the satellite Aqua and the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP), with an emphasis on several turbid water regions in the world. The new approach has shown to produce nLw(λ) spectra most consistent with the SWIR results among all NIR algorithms. Furthermore, validations against the in situ measurements also show that in less turbid water regions the new approach produces reasonable and similar results comparable to the current operational algorithm. In addition, by combining the new NIR atmospheric correction with the SWIR-based approach, the new NIR-SWIR atmospheric correction can produce further improved ocean color products. The new NIR atmospheric correction can be implemented in a global operational satellite ocean color data processing system.

© 2014 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.1285) Atmospheric and oceanic optics : Atmospheric correction

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: June 18, 2014
Revised Manuscript: August 12, 2014
Manuscript Accepted: August 13, 2014
Published: August 29, 2014

Citation
Lide Jiang and Menghua Wang, "Improved near-infrared ocean reflectance correction algorithm for satellite ocean color data processing," Opt. Express 22, 21657-21678 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-18-21657


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. IOCCG, Atmospheric Correction for Remotely-Sensed Ocean-Colour Products, M. Wang (Ed.), Reports of International Ocean-Color Coordinating Group, No. 10, IOCCG, Dartmouth, Canada (2010).
  2. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt.35(24), 4850–4862 (1996). [CrossRef] [PubMed]
  3. H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt.44(2), 241–248 (2005). [CrossRef] [PubMed]
  4. M. Wang, “Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance,” Appl. Opt.45(17), 4122–4128 (2006). [CrossRef] [PubMed]
  5. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm,” Appl. Opt.33(3), 443–452 (1994). [CrossRef] [PubMed]
  6. M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt.46(9), 1535–1547 (2007). [CrossRef] [PubMed]
  7. H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt.27(5), 862–871 (1988). [CrossRef] [PubMed]
  8. H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt.31(21), 4247–4260 (1992). [CrossRef] [PubMed]
  9. M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness,” Int. J. Remote Sens.23(13), 2693–2702 (2002). [CrossRef]
  10. M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens.26(24), 5651–5663 (2005). [CrossRef]
  11. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res.102(D14), 17081–17106 (1997). [CrossRef]
  12. M. Wang, K. D. Knobelspiesse, and C. R. McClain, “Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products,” J. Geophys. Res.110(D10), D10S06 (2005), doi:. [CrossRef]
  13. P. Y. Deschamps, M. Herman, and D. Tanre, “Modeling of the atmospheric effects and its application to the remote sensing of ocean color,” Appl. Opt.22(23), 3751–3758 (1983). [CrossRef] [PubMed]
  14. R. Frouin, M. Schwindling, and P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near infrared: In situ measurements and remote sensing implications,” J. Geophys. Res.101(C6), 14361–14371 (1996). [CrossRef]
  15. H. R. Gordon and M. Wang, “Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors,” Appl. Opt.33(33), 7754–7763 (1994). [CrossRef] [PubMed]
  16. K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: Their contribution to water-leaving radiance,” J. Geophys. Res.105(C3), 6493–6499 (2000). [CrossRef]
  17. C. Cox and W. Munk, “Measurements of the roughness of the sea surface from photographs of the sun's glitter,” J. Opt. Soc. Am.44(11), 838–850 (1954). [CrossRef]
  18. M. Wang and S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt.40(27), 4790–4798 (2001). [CrossRef] [PubMed]
  19. H. Zhang and M. Wang, “Evaluation of sun glint models using MODIS measurements,” J. Quant. Spectrosc. Radiat. Transf.111(3), 492–506 (2010). [CrossRef]
  20. S. Ramachandran and M. Wang, “Near-real-time ocean color data processing using ancillary data from the Global Forecast System model,” IEEE Trans. Geosci. Rem. Sens.49(4), 1485–1495 (2011). [CrossRef]
  21. H. Yang and H. R. Gordon, “Remote sensing of ocean color: assessment of water-leaving radiance bidirectional effects on atmospheric diffuse transmittance,” Appl. Opt.36(30), 7887–7897 (1997). [CrossRef] [PubMed]
  22. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt.39(21), 3582–3591 (2000). [CrossRef] [PubMed]
  23. K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt.39(6), 897–912 (2000). [CrossRef] [PubMed]
  24. R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters,” (NASA Goddard Space Flight Center, Greenbelt, Maryland, 2003), pp. 51–59.
  25. M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett.32(13), L13606 (2005), doi:. [CrossRef]
  26. S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express18(7), 7521–7527 (2010). [CrossRef] [PubMed]
  27. M. Wang, W. Shi, and L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region,” Opt. Express20(2), 741–753 (2012). [CrossRef] [PubMed]
  28. V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Rem. Sens.27(2), 145–153 (1989). [CrossRef]
  29. C. R. McClain, G. C. Feldman, and S. B. Hooker, “An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series,” Deep Sea Res. Part II Top. Stud. Oceanogr.51(1-3), 5–42 (2004). [CrossRef]
  30. F. S. Patt, R. A. Barnes, J. R. E. Eplee, B. A. Franz, W. D. Robinson, G. C. Feldman, S. W. Bailey, J. Gales, P. J. Werdell, M. Wang, R. Frouin, R. P. Stumpf, R. A. Arnone, J. R. W. Gould, P. M. Martinolich, V. Ransibrahmanakul, J. E. O'Reilly, and J. A. Yoder, “Algorithm updates for the fourth SeaWiFS data reprocessing,” (NASA Goddard Space Flight Center, Greenbelt, Maryland, 74pp, 2003).
  31. M. Wang, J. Tang, and W. Shi, “MODIS-derived ocean color products along the China east coastal region,” Geophys. Res. Lett.34(6), L06611 (2007), doi:. [CrossRef]
  32. W. Shi and M. Wang, “Satellite views of the Bohai Sea, Yellow Sea, and East China Sea,” Prog. Oceanogr.104, 30–45 (2012). [CrossRef]
  33. W. Shi and M. Wang, “Ocean reflectance spectra at the red, near-infrared, and shortwave infrared from highly turbid waters: A study in the Bohai Sea, Yellow Sea, and East China Sea,” Limnol. Oceanogr.59(2), 427–444 (2014). [CrossRef]
  34. J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res.117(C9), C09004 (2012), doi:. [CrossRef]
  35. M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res.114(C10), C10011 (2009), doi:. [CrossRef]
  36. M. Wang, J. H. Ahn, L. Jiang, W. Shi, S. Son, Y. J. Park, and J. H. Ryu, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express21(3), 3835–3849 (2013). [CrossRef] [PubMed]
  37. D. Doxaran, N. Lamquin, Y. J. Park, C. Mazeran, J. H. Ryu, M. Wang, and A. Poteau, “Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data,” Remote Sens. Environ.146, 36–48 (2014). [CrossRef]
  38. C. Goyens, C. Jamet, and K. G. Ruddick, “Spectral relationships for atmospheric correction. I. Validation of red and near infra-red marine reflectance relationships,” Opt. Express21(18), 21162–21175 (2013). [CrossRef] [PubMed]
  39. C. Goyens, C. Jamet, and K. G. Ruddick, “Spectral relationships for atmospheric correction. II. Improving NASA’s standard and MUMM near infra-red modeling schemes,” Opt. Express21(18), 21176–21187 (2013). [CrossRef] [PubMed]
  40. K. G. Ruddick, V. De Cauwer, Y.-J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr.51(2), 1167–1179 (2006). [CrossRef]
  41. G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys.214(1), 1–22 (2003). [CrossRef]
  42. M. Doron, S. Belanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ.115(7), 1617–1631 (2011). [CrossRef]
  43. M. Wang, “Extrapolation of the aerosol reflectance from the near-infrared to the visible: the single-scattering epsilon vs multiple-scattering epsilon method,” Int. J. Remote Sens.25(18), 3637–3650 (2004). [CrossRef]
  44. M. Wang and H. R. Gordon, “A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS,” Remote Sens. Environ.50(3), 231–239 (1994). [CrossRef]
  45. M. Wang and W. Shi, “Cloud masking for ocean color data processing in the coastal regions,” IEEE Trans. Geosci. Rem. Sens.44(11), 3196–3205 (2006). [CrossRef]
  46. S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, “Discriminating clear sky from clouds with MODIS,” J. Geophys. Res.103(D24), 32141–32157 (1998). [CrossRef]
  47. L. Jiang and M. Wang, “Identification of pixels with stray light and cloud shadow contaminations in the satellite ocean color data processing,” Appl. Opt.52(27), 6757–6770 (2013). [CrossRef] [PubMed]
  48. C. Hu, K. L. Carder, and F. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ.74(2), 195–206 (2000). [CrossRef]
  49. M. Wang, “A sensitivity study of SeaWiFS atmospheric correction algorithm: Effects of spectral band variations,” Remote Sens. Environ.67(3), 348–359 (1999). [CrossRef]
  50. M. Wang and B. A. Franz, “Comparing the ocean color measurements between MOS and SeaWiFS: A vicarious intercalibration approach for MOS,” IEEE Trans. Geosci. Rem. Sens.38(1), 184–197 (2000). [CrossRef]
  51. M. Wang, A. Isaacman, B. A. Franz, and C. R. McClain, “Ocean-color optical property data derived from the Japanese Ocean Color and Temperature Scanner and the French Polarization and Directionality of the Earth’s Reflectances: a comparison study,” Appl. Opt.41(6), 974–990 (2002). [CrossRef] [PubMed]
  52. M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos.118, 10347–10360 (2013), doi:. [CrossRef]
  53. M. Wang and W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express15(24), 15722–15733 (2007). [CrossRef] [PubMed]
  54. M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009). [CrossRef]
  55. M. Wang and W. Shi, “Sensor noise effects of the SWIR bands on MODIS-derived ocean color products,” IEEE Trans. Geosci. Rem. Sens.50(9), 3280–3292 (2012). [CrossRef]
  56. M. Wang, “Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing,” Appl. Opt.45(35), 8951–8963 (2006). [CrossRef] [PubMed]
  57. M. Wang and W. Shi, “Detection of ice and mixed ice-water pixels for MODIS ocean color data processing,” IEEE Trans. Geosci. Rem. Sens.47(8), 2510–2518 (2009). [CrossRef]
  58. D. L. Woodruff, R. P. Stumpf, J. A. Scope, and H. W. Paerl, “Remote estimation of water clarity in optically complex estuarine waters,” Remote Sens. Environ.68(1), 41–52 (1999). [CrossRef]
  59. S. Son and M. Wang, “Water properties in Chesapeake Bay from MODIS-Aqua measurements,” Remote Sens. Environ.123, 163–174 (2012). [CrossRef]
  60. W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ.113(8), 1587–1597 (2009). [CrossRef]
  61. M. Wang, W. Shi, and J. Tang, “Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ.115(3), 841–854 (2011). [CrossRef]
  62. W. Shi, M. Wang, X. Li, and W. G. Pichel, “Ocean sand ridge signatures in the Bohai Sea observed by satellite ocean color and synthetic aperture radar measurements,” Remote Sens. Environ.115(8), 1926–1934 (2011). [CrossRef]
  63. E. Knaeps, A. I. Togliatti, D. Raymaekers, K. G. Ruddick, and S. Sterckx, “In situ evidence of non-zero reflectance in the OLCI 1020 nm band for a turbid estuary,” Remote Sens. Environ.120, 133–144 (2012). [CrossRef]
  64. P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ.98(1), 122–140 (2005). [CrossRef]
  65. IOCCG, Mission Requirements for Future Ocean-Colour Sensors, C. R. McClain and G. Meister (Eds.), Reports of International Ocean-Colour Coordinating Group, No. 13, IOCCG, Dartmouth, Canada (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited