OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1243–1256

Micromirror structured illumination microscope for high-speed in vivo drosophila brain imaging

A. Masson, M. Pedrazzani, S. Benrezzak, P. Tchenio, T. Preat, and D. Nutarelli  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 1243-1256 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1371 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Genetic tools and especially genetically encoded fluorescent reporters have given a special place to optical microscopy in drosophila neurobiology research. In order to monitor neural networks activity, high speed and sensitive techniques, with high spatial resolution are required. Structured illumination microscopies are wide-field approaches with optical sectioning ability. Despite the large progress made with the introduction of the HiLo principle, they did not meet the criteria of speed and/or spatial resolution for drosophila brain imaging. We report on a new implementation that took advantage of micromirror matrix technology to structure the illumination. Thus, we showed that the developed instrument exhibits a spatial resolution close to that of confocal microscopy but it can record physiological responses with a speed improved by more than an order a magnitude.

© 2014 Optical Society of America

OCIS Codes
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:

Original Manuscript: September 30, 2013
Revised Manuscript: December 9, 2013
Manuscript Accepted: December 17, 2013
Published: January 13, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

A. Masson, M. Pedrazzani, S. Benrezzak, P. Tchenio, T. Preat, and D. Nutarelli, "Micromirror structured illumination microscope for high-speed in vivo drosophila brain imaging," Opt. Express 22, 1243-1256 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. H. Brand, N. Perrimon, “Targeted gene expression as a means of altering cell fates and generating dominant phenotypes,” Development 118, 401–415 (1993). [PubMed]
  2. B. D. Pfeiffer, T. T. Ngo, K. L. Hibbard, C. Murphy, A. Jenett, J. W. Truman, G. M. Rubin, “Refinement of tools for targeted gene expression in Drosophila,” Genetics 186(2), 735–755 (2010). [CrossRef] [PubMed]
  3. K. J. Venken, H. J. Bellen, “Transgenesis upgrades for Drosophila melanogaster,” Genetics 134(20), 3571–3584 (2007).
  4. G. Miesenbock, D. A. De Angelis, J. E. Rothman, “Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins,” Nature 394(6689), 192–195 (1998). [CrossRef] [PubMed]
  5. A. Fiala, T. Spall, S. Diegelmann, B. Eisermann, S. Sachse, J. M. Devaud, E. Buchner, C. G. Galizia, “Genetically expressed cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons,” Current Biology 12(21), 1877–1884 (2002). [CrossRef] [PubMed]
  6. Y. Wang, H. F. Guo, T. A. Pologruto, F. Hannan, I. Hakker, K. Svoboda, Y. Zhong, “Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2+ imaging,” J Neurosci. 24(29), 6507–6514 (2004). [CrossRef] [PubMed]
  7. S. M. Tomchik, R. L. Davis, “Dynamics of learning-related cAMP signaling and stimulus integration in the Drosophila olfactory pathway,” Neuron 64(4), 510–521 (2009). [CrossRef] [PubMed]
  8. N. Gervasi, P. Tchenio, T. Preat, “PKA dynamics in a Drosophila learning center: coincidence detection by rutabaga adenylyl cyclase and spatial regulation by dunce phosphodiesterase,” Neuron 65(4), 516–529 (2010). [CrossRef] [PubMed]
  9. T. J. Ebner, G. Chen, “Use of voltage-sensitive dyes and optical recordings in the central nervous system,” Prog Neurobiol. 46(5), 463–506 (1995). [CrossRef] [PubMed]
  10. R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59, 427–471 (1996). [CrossRef]
  11. W. Denk, J. H. Strickler, W. W. Webb, “Two-Photon Laser Scanning Fluorescence Microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  12. A. Bullen, S. S. Patel, P. Saggau, “High-speed, random-access fluorescence microscopy: High-resolution optical recording with voltage-sensitive dyes and ion indicators,” Biophys J. 73(1), 477–491 (1997). [CrossRef] [PubMed]
  13. G. Q. Xiao, G.S. Kino, “A real-time confocal scanning optical microscope,” Proc. SPIE 0809, 107–113(1987). [CrossRef]
  14. J. Bewersdorf, R. Pick, S. W. Hell, “Multifocal multiphoton microscopy,” Optics Letters 23(9), 655–657 (1998). [CrossRef]
  15. T. Nielsen, M. Fricke, D. Hellweg, P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J Microsc. 201(3), 368–376 (2001). [CrossRef] [PubMed]
  16. V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2(5), 1–14 (2008). [CrossRef]
  17. A. Nakano, “Spinning-disk confocal microscopy a cutting-edge tool for imaging of membrane traffic,” Cell Struct Funct. 27(5), 349–355 (2002). [CrossRef] [PubMed]
  18. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004). [CrossRef] [PubMed]
  19. M. A. A. Neil, R. Juskaitis, T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Express 22(24) 1905–1907 (1997).
  20. L. H. Schaeffer, D. Schuster, J. Schaffer, “Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach,” J Microsc. 216(2), 165–174 (2004). [CrossRef]
  21. D. Lim, K. K. Chu, J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Express 33(16), 1819–1821 (2008).
  22. J. Mertz, J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J Biomed Opt. 15(1), 016027 (2010). [CrossRef] [PubMed]
  23. S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, J. Mertz, “Optically Sectioned Fluorescence Endomicroscopy with Hybrid-Illumination Imaging through a Flexible Fiber Bundle,” Advances in Imaging 14(3), 30502 (2009).
  24. T. N. Ford, D. Lim, J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J Biomed Opt. 13(2), 021105 (2012). [CrossRef]
  25. B. Zang, J. Zerubia, J. C. Olivo-Marin, “Gaussian approximations of fluorescence microscope point-spread function models,” Applied Optics 46(10), 1819–1829 (2007). [CrossRef]
  26. J. B. Pawley, Handbook of Biological Confocal Microscopy (Plenum, 2006). [CrossRef]
  27. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).
  28. A. Stockseth, “Properties of a Defocused Optical System,” JOSA 59(10), 1314–1321 (1969). [CrossRef]
  29. M. Heisenberg, “Mushroom body memoir: from maps to models,” Nat Rev Neurosci. 4(4), 266–275 (2003). [CrossRef] [PubMed]
  30. M. Heisenberg, A. Borst, S. Wagner, D. Byers, “Drosophila mushroom body mutants are deficient in olfactory learning,” J Neurogenet. 13, 1–30 (1985). [CrossRef]
  31. J. B. Duffy, “GAL4 system in Drosophila: a fly geneticist’s Swiss army knife,” Genesis 34(1–2), 516–529 (2002). [CrossRef]
  32. R. I. Wilson, G. C. Turner, G. Laurent, “Transformation of Olfactory Representations in the Drosophila Antennal Lobe,” Science 303(5656), 366–370 (2004). [CrossRef]
  33. L. Tian, S. A. Hires, T. Mao, D. Huber, M. E. Chiappe, S. H. Chalasani, L. Petreanu, J. Akerboom, S. A. Kinney, E. R. Schreiter, C. I. Bargmann, V. Jayaraman, K. Svoboda, L. L. Looger, “Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators,” Nature Methods 6(12), 875–881 (2009). [CrossRef] [PubMed]
  34. D. Yu, D. B. G. Akalal, R. L. Davis, “Drosophila alpha/beta mushroom body neurons form a branch-specific, long-term cellular memory trace after spaced olfactory conditioning,” Neuron 52(5), 845–855 (2006). [CrossRef] [PubMed]
  35. F. Christiansen, C. Zube, T. F. M. Andlauer, C. Wichmann, W. Fouquet, D. Owald, S. Mertel, F. Leiss, G. Tavosanis, A. J. F. Luna, A. Fiala, S. Sigrist, “Presynapses in Kenyon Cell Dendrites in the Mushroom Body Calyx of Drosophila,” J. Neurosci. 31(26), 9696–9707 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited