OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1313–1318

Omnidirectional thermal emitter based on plasmonic nanoantenna arrays

Chih-Ming Wang and De-Yu Feng  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 1313-1318 (2014)
http://dx.doi.org/10.1364/OE.22.001313


View Full Text Article

Enhanced HTML    Acrobat PDF (1366 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, the optical properties of a plasmonic nanoantenna array have been investigated. The proposed plasmonic structure presents omnidirectional resonance properties, such as omnidirectional reflection dip and omnidirectional emission peak. In addition, the reflection and emission of the plasmonic nanoantenna array with various metal/insulator/metal cavity thicknesses are theoretically and experimentally investigated. The simulation reveals a fair agreement with the experimental results.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.6815) Scattering : Thermal emission

ToC Category:
Plasmonics

History
Original Manuscript: December 27, 2013
Manuscript Accepted: January 3, 2014
Published: January 13, 2014

Citation
Chih-Ming Wang and De-Yu Feng, "Omnidirectional thermal emitter based on plasmonic nanoantenna arrays," Opt. Express 22, 1313-1318 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-1313


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004). [CrossRef] [PubMed]
  3. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  4. L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett.7(11), 3523–3527 (2007). [CrossRef] [PubMed]
  5. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett.209(2), 171–176 (2004). [CrossRef] [PubMed]
  6. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater.16(19), 1685–1706 (2004). [CrossRef]
  7. A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin, “λ³/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett.11(9), 3557–3563 (2011). [CrossRef] [PubMed]
  8. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature416(6876), 61–64 (2002). [CrossRef] [PubMed]
  9. J. Le Gall, M. Olivier, and J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B55(15), 10105–10114 (1997). [CrossRef]
  10. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics3(11), 658–661 (2009). [CrossRef]
  11. S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B62(4), R2243–R2246 (2000). [CrossRef]
  12. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature417(6884), 52–55 (2002). [CrossRef] [PubMed]
  13. D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express14(19), 8785–8796 (2006). [CrossRef] [PubMed]
  14. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for Extreme Light Concentration and Manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  15. M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, “High performance midinfrared narrowband plasmonic thermal emitter,” Appl. Phys. Lett.89(17), 173116 (2006). [CrossRef]
  16. Y. Ueba, J. Takahara, and T. Nagatsuma, “Thermal radiation control in the terahertz region using the spoof surface plasmon mode,” Opt. Lett.36(6), 909–911 (2011). [CrossRef] [PubMed]
  17. M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun.168(1–4), 117–122 (1999). [CrossRef]
  18. F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B69(15), 155412 (2004). [CrossRef]
  19. G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett.92(8), 081913 (2008). [CrossRef]
  20. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, and D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express15(22), 14673–14678 (2007). [CrossRef] [PubMed]
  21. Y. C. Chang, C. M. Wang, M. N. Abbas, M. H. Shih, and D. P. Tsai, “T-shaped plasmonic array as a narrow-band thermal emitter or biosensor,” Opt. Express17(16), 13526–13531 (2009). [CrossRef] [PubMed]
  22. C. M. Wang and C. J. Yu, “Free space Plasmonic filter with Dual resonance wavelength using asymmetric T-shaped metallic array,” Plasmonics8(2), 385–390 (2013). [CrossRef]
  23. S. Y. Huang, H. H. Chen, H. H. Hsiao, P. E. Chang, Y. T. Chang, C. H. Chen, Y. W. Jiang, H. C. Chang, and S. C. Lee, “Triple peaks plasmonic thermal emitter with selectable wavelength using periodic block pattern as top layer,” IEEE Photonics Technol. Lett.24, 833–835 (2012).
  24. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A12, 1068–1076 (1995).
  25. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord,“Stable implementation of the rigorous coupled-wave analysis of surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A12, 1077–1086 (1995).
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  27. C. I. Lin and T. K. Gaylord, “Multimode metal-insulator-metal waveguides: Analysis and experimental characterization,” Phys. Rev. B85(8), 085405 (2012). [CrossRef]
  28. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006). [CrossRef]
  29. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B20(7), 1538–1541 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited