OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1319–1329

Shack-Hartmann spot dislocation map determination using an optical flow method

J. Vargas, R. Restrepo, and T. Belenguer  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 1319-1329 (2014)
http://dx.doi.org/10.1364/OE.22.001319


View Full Text Article

Enhanced HTML    Acrobat PDF (1612 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a robust, dense, and accurate Shack-Hartmann spot dislocation map determination method based on a regularized optical flow algorithm that does not require obtaining the spot centroids. The method is capable to measure in presence of strong noise, background illumination and spot modulating signals, which are typical limiting factors of traditional centroid detection algorithms. Moreover, the proposed approach is able to face cases where some of the reference beam spots have not a corresponding one in the distorted Hartmann diagram, and it can expand the dynamic range of the Shack-Hartmann sensor unwrapping the obtained dense dislocation maps. We have tested the algorithm with both simulations and experimental data obtaining satisfactory results. A complete MATLAB package that can reproduce all the results can be downloaded from [http://goo.gl/XbZVOr].

© 2014 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Image Processing

History
Original Manuscript: September 12, 2013
Revised Manuscript: November 18, 2013
Manuscript Accepted: December 10, 2013
Published: January 14, 2014

Citation
J. Vargas, R. Restrepo, and T. Belenguer, "Shack-Hartmann spot dislocation map determination using an optical flow method," Opt. Express 22, 1319-1329 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-1319


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. G. Lane, M. Tallon, “Wave-front reconstruction using a Shack-Hartmann sensor,” Appl. Opt. 31(32), 6902–6908 (1992). [CrossRef] [PubMed]
  2. D. N. Neal, J. Copland, D. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002). [CrossRef]
  3. M. Nicolle, T. Fusco, G. Rousset, V. Michau, “Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics,” Opt. Lett. 29(23), 2743–2745 (2004). [CrossRef] [PubMed]
  4. K. L. Baker, M. M. Moallem, “Iteratively weighted centroiding for Shack-Hartmann wavefront sensors,” Opt. Express 15(8), 5147–5159 (2007). [CrossRef] [PubMed]
  5. L. A. Poyneer, D. W. Palmer, K. N. LaFortune, B. Bauman, “Experimental results for correlation-based wavefront sensing,” Proc. SPIE 5894, 58940N (2005). [CrossRef]
  6. C. Leroux, C. Dainty, “Estimation of centroid positions with a matched-filter algorithm: relevance for aberrometry of the eye,” Opt. Express 18(2), 1197–1206 (2010). [CrossRef] [PubMed]
  7. J. Vargas, R. Restrepo, J. C. Estrada, C. O. S. Sorzano, Y. Z. Du, J. M. Carazo, “Shack-Hartmann centroid detection using the spiral phase transform,” Appl. Opt. 51(30), 7362–7367 (2012). [CrossRef] [PubMed]
  8. J. Pfund, N. Lindlein, J. Schwider, “Dynamic range expansion of a Shack-Hartmann sensor by use of a modified unwrapping algorithm,” Opt. Lett. 23(13), 995–997 (1998). [CrossRef] [PubMed]
  9. B. K. P. Horn, B. G. Schunck, “Determining Optical Flow,” Artif. Intell. 17(1-3), 185–203 (1981). [CrossRef]
  10. J. Vargas, J. A. Quiroga, C. O. S. Sorzano, J. C. Estrada, M. Servín, “Multiplicative phase-shifting interferometry using optical flow,” Appl. Opt. 51(24), 5903–5908 (2012). [CrossRef] [PubMed]
  11. J. Vargas, J. A. Quiroga, C. O. S. Sorzano, J. C. Estrada, J. M. Carazo, “Two-step interferometry by a regularized optical flow algorithm,” Opt. Lett. 36(17), 3485–3487 (2011). [CrossRef] [PubMed]
  12. J. Y. Bouguet, “Pyramidal Implementation of the LK Feature Tracker,” Tech. Rep., Intel Corporation, Microprocessor Research Labs (1999).
  13. B. D. Lucas, T. Kanade, “An iterative image registration technique with an application to stereo vision,” Proc. of Imaging Understanding Workshop 121–130 (1981).
  14. J. Vargas, L. González-Fernandez, J. Antonio Quiroga, T. Belenguer, “Shack–Hartmann centroid detection method based on high dynamic range imaging and normalization techniques,” Appl. Opt. 49(13), 2409–2416 (2010). [CrossRef]
  15. J. C. Estrada, J. Vargas, J. M. Flores-Moreno, J. A. Quiroga, “Windowed phase unwrapping using a first-order dynamic system following iso-phase contours,” Appl. Opt. 51(31), 7549–7553 (2012). [CrossRef] [PubMed]
  16. M. A. Navarro, J. C. Estrada, M. Servin, J. A. Quiroga, J. Vargas, “Fast two-dimensional simultaneous phase unwrapping and low-pass filtering,” Opt. Express 20(3), 2556–2561 (2012). [CrossRef] [PubMed]
  17. J. Marzat, Y. Dumortier, and A. Ducrot, “Real-time dense and accurate parallel optical flow using CUDA,” WSCG2009 105–111. (2009).
  18. R. T. Frankot, R. Chellappa, “A method for enforcing integrability in shape from shading,” IEEE PAMI 10(4), 439–451 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited