OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1350–1358

The cross correlation function of partially coherent vortex beam

Pan Feng Ding and Jixiong Pu  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 1350-1358 (2014)
http://dx.doi.org/10.1364/OE.22.001350


View Full Text Article

Enhanced HTML    Acrobat PDF (792 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work presents theoretical analysis on the cross correlation function (CCF) of partially coherent vortex beam (PCVB), where the relation of the number of the rings of CCF dislocations and orbital angular momentum (OAM) of PCVB is analyzed in detail. It is shown that rings of CCF dislocations do not always exist, and depend on the coherence length, the order of PCVB and location of observation plane, although the CCF indicates topological charge to some degree. Comprehensive analysis of the CCF of PCVB and numerical simulations all validate such phenomenon.

© 2014 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(050.4865) Diffraction and gratings : Optical vortices
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: October 14, 2013
Revised Manuscript: December 21, 2013
Manuscript Accepted: December 21, 2013
Published: January 14, 2014

Citation
Pan Feng Ding and Jixiong Pu, "The cross correlation function of partially coherent vortex beam," Opt. Express 22, 1350-1358 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-1350


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci.336(1605), 165–190 (1974). [CrossRef]
  2. E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett.103(10), 103903 (2009). [CrossRef] [PubMed]
  3. M. Šiler, P. Jákl, O. Brzobohatý, and P. Zemánek, “Optical forces induced behavior of a particle in a non-diffracting vortex beam,” Opt. Express20(22), 24304–24319 (2012). [CrossRef] [PubMed]
  4. K. Y. Bliokh and F. Nori, “Spatiotemporal vortex beams and angular momentum,” Phys. Rev. A86(3), 033824 (2012). [CrossRef]
  5. H. W. Yan, E. T. Zhang, B. Y. Zhao, and K. L. Duan, “Free-space propagation of guided optical vortices excited in an annular core fiber,” Opt. Express20(16), 17904–17915 (2012). [CrossRef] [PubMed]
  6. Y. F. Jiang, K. K. Huang, and X. H. Lu, “Propagation dynamics of abruptly autofocusing Airy beams with optical vortices,” Opt. Express20(17), 18579–18584 (2012). [CrossRef] [PubMed]
  7. E. Mari, F. Tamburini, G. A. Swartzlander, A. Bianchini, C. Barbieri, F. Romanato, and B. Thidé, “Sub-Rayleigh optical vortex coronagraphy,” Opt. Express20(3), 2445–2451 (2012). [CrossRef] [PubMed]
  8. Y. J. Han and G. H. Zhao, “Measuring the topological charge of optical vortices with an axicon,” Opt. Lett.36(11), 2017–2019 (2011). [CrossRef] [PubMed]
  9. Y. X. Liu, J. X. Pu, and B. D. Lü, “Method for exploring the orbital angular momentum of an optical vortex beam with a triangular multipoint plate,” Appl. Opt.50(24), 4844–4847 (2011). [CrossRef] [PubMed]
  10. S. Prabhakar, A. Kumar, J. Banerji, and R. P. Singh, “Revealing the order of a vortex through its intensity record,” Opt. Lett.36(22), 4398–4400 (2011). [CrossRef] [PubMed]
  11. L. Shi, L. H. Tian, and X. F. Chen, “Characterizing topological charge of optical vortex using non-uniformly distributed multi-pinhole plate,” Chin. Opt. Lett.10(12), 120501 (2012). [CrossRef]
  12. H. Tao and J. X. Pu, “Measuring the topological charge of vortex beams by using an annular ellipse aperture,” Appl. Phys. B106(4), 927–932 (2012). [CrossRef]
  13. M. E. Anderson, H. Bigman, L. E. E. De Araujo, and J. L. Chaloupka, “Measuring the topological charge of ultra-broadband, optical-vortex beams with a triangular aperture,” J. Opt. Soc. Am. B29(8), 1968–1976 (2012).
  14. D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander., “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett.92(14), 143905 (2004). [CrossRef] [PubMed]
  15. C. Zhao, F. Wang, Y. Dong, Y. Han, and Y. Cai, “Effect of spatial coherence on determining the topological charge of a vortex beam,” Appl. Phys. Lett.101(26), 261104 (2012). [CrossRef]
  16. Y. J. Yang, M. Mazilu, and K. Dholakia, “Measuring the orbital angular momentum of partially coherent optical vortices through singularities in their cross-spectral density functions,” Opt. Lett.37(23), 4949–4951 (2012). [PubMed]
  17. Y. Yang, M. Chen, M. Mazilu, A. Mourka, Y. Liu, and K. Dholakia, “Effect of the radial and azimuthal mode indices of a partially coherent vortex field upon a spatial correlation singularity,” New J. Phys.15(11), 113053 (2013). [CrossRef]
  18. Z. Y. Chen and J. X. Pu, “Stochastic electromagnetic vortex beam and its propagation,” Phys. Lett. A372(15), 2734–2740 (2008). [CrossRef]
  19. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  20. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited