OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1359–1365

Optical and magneto-optical anisotropies in large-area two-dimensional Co antidots film

W.B. Xia, J.L. Gao, S.Y. Zhang, X.J. Luo, L.Y. Chen, L.Q. Xu, S.L. Tang, and Y.W. Du  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 1359-1365 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1230 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we investigate the plasmon-induced optical and magneto-optical anisotropies in the large-area square-ordered Co antidots film. It shows that both the outline of reflectivity spectrum and Kerr spectrum are significantly modified by surface plasmon polarition (SPP) resonances. Moreover, the magnitude of Kerr angle reaches to about 10 minutes at the azimuthal angle 45°, which is over 3 times of that of pure Co film. These phenomena are attributed to the SPP resonances with different diffraction orders of reciprocal lattice vectors.

© 2014 Optical Society of America

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:

Original Manuscript: October 15, 2013
Revised Manuscript: December 23, 2013
Manuscript Accepted: January 2, 2014
Published: January 14, 2014

W.B. Xia, J.L. Gao, S.Y. Zhang, X.J. Luo, L.Y. Chen, L.Q. Xu, S.L. Tang, and Y.W. Du, "Optical and magneto-optical anisotropies in large-area two-dimensional Co antidots film," Opt. Express 22, 1359-1365 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. P. Berini, I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011). [CrossRef]
  3. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  5. B. Sepúlveda, A. Calle, L. M. Lechuga, G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31(8), 1085–1087 (2006). [CrossRef] [PubMed]
  6. W. Zhang, L. Huang, C. Santschi, O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010). [CrossRef] [PubMed]
  7. M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008). [CrossRef] [PubMed]
  8. J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004). [CrossRef]
  9. M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011). [CrossRef]
  10. D. R. Smith, N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett. 85(14), 2933–2936 (2000). [CrossRef] [PubMed]
  11. D. R. Smith, J. B. Pendry, M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004). [CrossRef] [PubMed]
  12. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26(8), 1594–1598 (2009). [CrossRef]
  13. J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007). [CrossRef]
  14. A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97(26), 261908 (2010). [CrossRef]
  15. V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011). [CrossRef] [PubMed]
  16. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun 4, 1599 (2013). [CrossRef] [PubMed]
  17. G. Armelles, A. Cebollada, A. García-Martín, M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013). [CrossRef]
  18. Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009). [CrossRef]
  19. Z. L. Han, J. H. Ai, P. Zhan, J. Du, H. F. Ding, Z. L. Wang, “Strong in-plane anisotropy of magneto-optical Kerr effect in corrugated cobalt films deposited on highly ordered two-dimensional colloidal crystals,” Appl. Phys. Lett. 98(3), 031903 (2011). [CrossRef]
  20. M. V. Sapozhnikov, S. A. Gusev, V. V. Rogov, O. L. Ermolaeva, B. B. Troitskii, L. V. Khokhlova, D. A. Smirnov, “Magnetic and optical properties of nanocorrugated Co films,” Appl. Phys. Lett. 96(12), 122507 (2010). [CrossRef]
  21. A. A. Grunin, N. A. Sapoletova, K. S. Napolskii, A. A. Eliseev, A. A. Fedyanin, “Magnetoplasmonic nanostructures based on nickel inverse opal slabs,” J. Appl. Phys. 111, 07A948 (2012).
  22. E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19(24), 23867–23877 (2011). [CrossRef] [PubMed]
  23. J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, A. Garcia-Martin, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status. Solidi. RRL 4(10), 271–273 (2010). [CrossRef]
  24. J. Oh, C. V. Thompson, “Selective barrier perforation in porous alumina anodized on substrates,” Adv. Mater. 20(7), 1368–1372 (2008). [CrossRef]
  25. S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013). [CrossRef]
  26. M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17(6), 3182–3185 (1999). [CrossRef]
  27. D. Xia, Z. Ku, S. C. Lee, S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011). [CrossRef] [PubMed]
  28. C. A. Ross, H. I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, M. C. Abraham, R. J. Ram, “Fabrication of patterned media for high density magnetic storage,” J. Vac. Sci. Technol. B 17(6), 3168–3176 (1999). [CrossRef]
  29. A. V. Chetvertukhin, A. A. Grunin, A. V. Baryshev, T. V. Dolgova, H. Uchida, M. Inoue, A. A. Fedyanin, “Magneto-optical Kerr effect enhancement at the Wood's anomaly in magnetoplasmonic crystals,” J. Magn. Magn. Mater. 324(21), 3516–3518 (2012). [CrossRef]
  30. R. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited