OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1372–1380

Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells

Abigail H. Jeorrett, Steven L. Neale, David Massoubre, Erdan Gu, Robert K. Henderson, Owain Millington, Keith Mathieson, and Martin D. Dawson  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 1372-1380 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1062 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact optoelectronic tweezers system for combined cell manipulation and analysis is presented. CMOS-controlled gallium nitride micro-LED arrays are used to provide simultaneous spatio-temporal control of dielectrophoresis traps within an optoelectronic tweezers device and fluorescence imaging of contrasting dye labelled cells. This capability provides direct identification, selection and controlled interaction of single T-lymphocytes and dendritic cells. The trap strength and profile for two emission wavelengths of micro-LED array have been measured and a maximum trapping force of 13.1 and 7.6 pN was achieved for projected micro-LED devices emitting at λmax 520 and 450 nm, respectively. A potential application in biological research is demonstrated through the controlled interaction of live immune cells where there is potential for this method of OET to be implemented as a compact device.

© 2014 Optical Society of America

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(230.0250) Optical devices : Optoelectronics
(230.3670) Optical devices : Light-emitting diodes
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: November 5, 2013
Revised Manuscript: December 18, 2013
Manuscript Accepted: December 19, 2013
Published: January 14, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Abigail H. Jeorrett, Steven L. Neale, David Massoubre, Erdan Gu, Robert K. Henderson, Owain Millington, Keith Mathieson, and Martin D. Dawson, "Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells," Opt. Express 22, 1372-1380 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010). [CrossRef]
  2. P. Y. Chiou, A. T. Ohta, M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005). [CrossRef] [PubMed]
  3. H. Hwang, Y.-J. Choi, W. Choi, S.-H. Kim, J. Jang, J.-K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008). [CrossRef] [PubMed]
  4. J. K. Valley, M. M. Garcia, P. Swinton, S. L. Neale, H.-Y. Hsu, A. Jamshidi, M. C. Wu, “Optoelectronic tweezers for quantitative assessment of embryo developmental stage,” in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2010), pp. 943–946. [CrossRef]
  5. S.-M. Yang, T.-M. Yu, H.-P. Huang, M.-Y. Ku, L. Hsu, C.-H. Liu, “Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis,” Opt. Lett. 35(12), 1959–1961 (2010). [CrossRef] [PubMed]
  6. M. C. Wu, “Optoelectronic tweezers,” Nat. Photonics 5(6), 322–324 (2011). [CrossRef]
  7. R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4(2), 022811 (2010). [CrossRef] [PubMed]
  8. A. T. Ohta, P.-Y. Chiou, and M. C. Wu, “Dynamic DMD-driven optoelectronic tweezers for microscopic particle manipulation,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Vol. 1 of 2004 OSA Technical Digest Series (Optical Society of America, 2004), paper CWS5.
  9. A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. J. D. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, M. D. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Express 19(3), 2720–2728 (2011). [CrossRef] [PubMed]
  10. H. Y. Hsu, A. T. Ohta, P. Y. Chiou, A. Jamshidi, and M. C. Wu, “Phototransistor-based optoelectronic tweezers for cell manipulation in highly conductive solution,” in Proceedings of Solid-State Sensors, Actuators and Microsystems International Conference (Transducers, 2007), pp. 477–480. [CrossRef]
  11. A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, M. L. Dustin, “The immunological synapse: A molecular machine controlling T cell activation,” Science 285(5425), 221–227 (1999). [CrossRef] [PubMed]
  12. J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008). [CrossRef] [PubMed]
  13. B. R. Rae, C. Griffin, J. J. D. McKendry, J. M. Girkin, H. X. Zhang, E. Gu, D. Renshaw, E. Charbon, M. D. Dawson, R. K. Henderson, “CMOS driven micro-pixel LEDs integrated with single photon avalanche diodes for time resolved fluorescence measurements,” J. Phys. D Appl. Phys. 41(9), 094011 (2008). [CrossRef]
  14. D. M. Underhill, M. Bassetti, A. Rudensky, A. Aderem, “Dynamic interactions of macrophages with T cells during antigen presentation,” J. Exp. Med. 190(12), 1909–1914 (1999). [CrossRef] [PubMed]
  15. M. B. Lutz, N. Kukutsch, A. L. J. Ogilvie, S. Rössner, F. Koch, N. Romani, G. Schuler, “An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow,” J. Immunol. Methods 223(1), 77–92 (1999). [CrossRef] [PubMed]
  16. Life Technology, “CellTracker™ Probes for Long-Term Tracing of Living Cells,” http://tools.invitrogen.com/content/sfs/manuals/mp02925.pdf .
  17. M. P. Hughes, Nanoelectromechanics in Engineering and Biology (CRC Press, 2003).
  18. K. Svoboda, S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994). [CrossRef] [PubMed]
  19. S. L. Neale, A. T. Ohta, H.-Y. Hsu, J. K. Valley, A. Jamshidi, M. C. Wu, “Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells,” Opt. Express 17(7), 5231–5239 (2009). [CrossRef] [PubMed]
  20. T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003). [CrossRef] [PubMed]
  21. S. L. Neale, M. Mazilu, J. I. B. Wilson, K. Dholakia, T. F. Krauss, “The resolution of optical traps created by Light Induced Dielectrophoresis (LIDEP),” Opt. Express 15(20), 12619–12626 (2007). [CrossRef] [PubMed]
  22. K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: MP4 (1012 KB)     
» Media 2: MP4 (2013 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited