OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1394–1401

Microresonator-based comb generation without an external laser source

Adrea R. Johnson, Yoshitomo Okawachi, Michael R. E. Lamont, Jacob S. Levy, Michal Lipson, and Alexander L. Gaeta  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 1394-1401 (2014)
http://dx.doi.org/10.1364/OE.22.001394


View Full Text Article

Enhanced HTML    Acrobat PDF (1019 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a fiber-microresonator dual-cavity architecture with which we generate 880 nm of comb bandwidth without the need for a continuous-wave pump laser. Comb generation with this pumping scheme is greatly simplified as compared to pumping with a single frequency laser, and the generated combs are inherently robust due to the intrinsic feedback mechanism. Temporal and radio frequency (RF) characterization show a regime of steady comb formation that operates with reduced RF amplitude noise. The dual-cavity design is capable of being integrated on-chip and offers the potential of a turn-key broadband multiple wavelength source.

© 2014 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 14, 2013
Revised Manuscript: January 3, 2014
Manuscript Accepted: January 4, 2014
Published: January 14, 2014

Citation
Adrea R. Johnson, Yoshitomo Okawachi, Michael R. E. Lamont, Jacob S. Levy, Michal Lipson, and Alexander L. Gaeta, "Microresonator-based comb generation without an external laser source," Opt. Express 22, 1394-1401 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-1394


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011). [CrossRef] [PubMed]
  2. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007). [CrossRef] [PubMed]
  3. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett.101(9), 093902 (2008). [CrossRef] [PubMed]
  4. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “A silicon-based monolithic optical frequency comb source,” arXiv:1102.0326.
  5. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36(17), 3398–3400 (2011). [CrossRef] [PubMed]
  6. W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Generation of near-infrared frequency combs from a MgF₂ whispering gallery mode resonator,” Opt. Lett.36(12), 2290–2292 (2011). [CrossRef] [PubMed]
  7. S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84(5), 053833 (2011). [CrossRef]
  8. K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21(1), 1335–1343 (2013). [CrossRef] [PubMed]
  9. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photonics5(12), 770–776 (2011). [CrossRef]
  10. T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6(7), 480–487 (2012). [CrossRef]
  11. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002). [CrossRef] [PubMed]
  12. Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express13(25), 10431–10439 (2005). [CrossRef] [PubMed]
  13. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, Th. Kentischer, W. Schmidt, and Th. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008). [CrossRef] [PubMed]
  14. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express12(20), 4742–4750 (2004). [CrossRef] [PubMed]
  15. M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun3, 765 (2012). [CrossRef] [PubMed]
  16. L. Caspani, M. Peccianti, A. Pasquazi, M. Clerici, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Self-locked low threshold OPO in a CMOS-compatible microring resonator,” CM2M.2, CLEO: Science and Innovations (2012).
  17. A. Pasquazi, L. Caspani, M. Peccianti, M. Clerici, M. Ferrera, L. Razzari, D. Duchesne, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip,” Opt. Express21(11), 13333–13341 (2013). [CrossRef] [PubMed]
  18. A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express20(24), 27355–27362 (2012). [CrossRef] [PubMed]
  19. N. A. Cholan, M. H. Al-Mansoori, A. S. M. Noor, A. Ismail, and M. A. Mahdi, “Multi-wavelength generation by self-seeded four-wave mixing,” Opt. Express21(5), 6131–6138 (2013). [CrossRef] [PubMed]
  20. H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett.19(4), 230–232 (2007). [CrossRef]
  21. L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express18(26), 27703–27711 (2010). [CrossRef] [PubMed]
  22. P. A. M. Dirac, “The quantum theory of the emission and absorption of radiation,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character114(767), 243–265 (1927). [CrossRef]
  23. C. Y. Jin, M. Y. Swinkels, R. Johne, T. B. Hoang, L. Midolo, P. J. van Veldhoven, and A. Fiore, “All optical control of the spontaneous emission of quantum dots using coupled-cavity quantum electrodynamics,” arXiv:1207.5311.
  24. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  25. V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A54(3), R1777–R1780 (1996). [CrossRef] [PubMed]
  26. D. D. Smith, H. Chang, and K. A. Fuller, “Whispering-gallery mode splitting in coupled microresonators,” J. Opt. Soc. Am. B20(9), 1967–1974 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited