OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1402–1412

Pinhole diffraction holography for fabrication of high-resolution Fresnel Zone Plates

Sankha S. Sarkar, Harun H. Solak, Christian David, and J. Friso van der Veen  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 1402-1412 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (5232 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Abstract: Fresnel zone plates (FZPs) play an essential role in high spatial resolution x-ray imaging and analysis of materials in many fields. These diffractive lenses are commonly made by serial writing techniques such as electron beam or focused ion beam lithography. Here we show that pinhole diffraction holography has potential to generate FZP patterns that are free from aberrations and imperfections that may be present in alternative fabrication techniques. In this presented method, FZPs are fabricated by recording interference pattern of a spherical wave generated by diffraction through a pinhole, illuminated with coherent plane wave at extreme ultraviolet (EUV) wavelength. Fundamental and practical issues involved in formation and recording of the interference pattern are considered. It is found that resolution of the produced FZP is directly related to the diameter of the pinhole used and the pinhole size cannot be made arbitrarily small as the transmission of EUV or x-ray light through small pinholes diminishes due to poor refractive index contrast found between materials in these spectral ranges. We also find that the practical restrictions on exposure time due to the light intensity available from current sources directly imposes a limit on the number of zones that can be printed with this method. Therefore a trade-off between the resolution and the FZP diameter exists. Overall, we find that this method can be used to fabricate aberration free FZPs down to a resolution of about 10 nm.

© 2014 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(340.7480) X-ray optics : X-rays, soft x-rays, extreme ultraviolet (EUV)
(050.1965) Diffraction and gratings : Diffractive lenses

ToC Category:

Original Manuscript: November 25, 2013
Revised Manuscript: January 6, 2014
Manuscript Accepted: January 6, 2014
Published: January 14, 2014

Sankha S. Sarkar, Harun H. Solak, Christian David, and J. Friso van der Veen, "Pinhole diffraction holography for fabrication of high-resolution Fresnel Zone Plates," Opt. Express 22, 1402-1412 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Kirz, C. Jacobsen, M. Howells, “Soft x-ray microscopes and their biological applications,” Q. Rev. Biophys. 28(1), 33–130 (1995). [CrossRef] [PubMed]
  2. W. S. Haddad, I. McNulty, J. E. Trebes, E. H. Anderson, R. A. Levesque, L. Yang, “Ultrahigh-resolution x-ray tomography,” Science 266(5188), 1213–1215 (1994). [CrossRef] [PubMed]
  3. M. Young, “Zone plates and their aberrations,” J. Opt. Soc. Am. 62(8), 106–110 (1962).
  4. G. L. Rogers, “Gabor diffraction microscopy: the hologram as a generalized zone-plate,” Nature 166(4214), 237 (1950). [CrossRef] [PubMed]
  5. M. H. Horman, H. H. M. Chau, “Zone plate theory based on holography,” Appl. Opt. 6(2), 317–322 (1967). [CrossRef] [PubMed]
  6. H. H. M. Chau, “Zone plates produced optically,” Appl. Opt. 8(6), 1209–1211 (1969). [CrossRef] [PubMed]
  7. H. Ming, Y. Wu, J. P. Xie, T. Nakajima, “Fabrication of holographic microlenses using a deep UV lithographed zone plate,” Appl. Opt. 29(34), 5111–5114 (1990). [CrossRef] [PubMed]
  8. G. Schmahl, D. Rudolph, P. Guttmann, O. Christ, “Zone plates for x-ray microscopy,” X Ray Microsc. 43, 63–74 (1984). [CrossRef]
  9. Y. B. Yun, M. R. Howells, “High-resolution Fresnel zone plates for x-ray applications by spatial-frequency multiplication,” J. Opt. Soc. Am. A 4(1), 34–40 (1987). [CrossRef]
  10. J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan, “Demonstration of x-ray holography with an x-ray laser,” Science 238(4826), 517–519 (1987). [CrossRef] [PubMed]
  11. S. H. Lee, P. Naulleau, K. A. Goldberg, C. H. Cho, S. Jeong, J. Bokor, “Extreme-ultraviolet lensless Fourier-transform holography,” Appl. Opt. 40(16), 2655–2661 (2001). [CrossRef] [PubMed]
  12. P. W. Wachulak, R. A. Bartels, M. C. Marconi, C. S. Menoni, J. J. Rocca, Y. Lu, B. Parkinson, “Sub 400 nm spatial resolution extreme ultraviolet holography with a table top laser,” Opt. Express 14(21), 9636–9642 (2006). [CrossRef] [PubMed]
  13. H. H. Solak, C. David, J. Gobrecht, “Fabrication of high-resolution zone plates with wideband extreme-ultraviolet holography,” Appl. Phys. Lett. 85(14), 2700–2702 (2004). [CrossRef]
  14. Y. C. Cheng, A. Isoyan, J. Wallace, M. Khan, F. Cerrina, “Extreme ultraviolet holographic lithography: Initial results,” Appl. Phys. Lett. 90(2), 023116 (2007). [CrossRef]
  15. W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046), 1210–1213 (2005). [CrossRef] [PubMed]
  16. K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007). [CrossRef] [PubMed]
  17. T. H. P. Chang, “Proximity effect in electron-beam lithography,” J. Vac. Sci. Technol. 12(6), 1271–1275 (1975). [CrossRef]
  18. H. H. Solak, “Nanolithography with coherent extreme ultraviolet light,” J. Phys. D Appl. Phys. 39(10), R171–R188 (2006). [CrossRef]
  19. B. Päivänranta, A. Langner, E. Kirk, C. David, Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22(37), 375302 (2011). [CrossRef] [PubMed]
  20. S. S. Sarkar, P. K. Sahoo, H. H. Solak, C. David, J. F. Van der Veen, “Fabrication of Fresnel zone plates by holography in the extreme ultraviolet region,” J. Vac. Sci. Technol. B 26(6), 2160–2163 (2008). [CrossRef]
  21. J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005).
  22. http://henke.lbl.gov/optical_constants/ .
  23. J. W. Thackeray, R. A. Nassar, K. Spear-Alfonso, R. Brainard, D. Goldfarb, T. Wallow, Y. Y. Wei, W. Montgomery, K. Petrillo, O. Wood, C. S. Koay, J. Mackey, P. Naulleau, B. Pierson, H. H. Solak, “Pathway to sub-30nm resolution in EUV lithography,” J. Photopolym. Sci. Technol. 20(3), 411–418 (2007). [CrossRef]
  24. http://www.emexplorer.net/index.html .
  25. K. A. Goldberg, E. Tejnil, J. Bokor, “A 3-D numerical study of pinhole diffraction to predict the accuracy of EUV point diffraction interferometry,” OSA Trends Opt. Photo. 4, 133–137 (1996).
  26. C. Bergemann, H. Keymeulen, J. F. van der Veen, “Focusing x-ray beams to nanometer dimensions,” Phys. Rev. Lett. 91(20), 204801 (2003). [CrossRef] [PubMed]
  27. R. H. Clarke and H. Brown, Diffraction Theory and Antennas (John Wiley, 1980).
  28. S. Silver, Microwave Antenna Theory and Design (Institute of Electrical and Electronics Engineers, 1984) pp 158–159.
  29. B. Qi, H. Chen, N. Dong, “Wavefront fitting of interferograms with Zernike polynomials,” Opt. Eng. 41(7), 1565–1567 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited