OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1413–1425

Modeling of temperature and excitation dependences of efficiency in an InGaN light-emitting diode

Weng W. Chow  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 1413-1425 (2014)
http://dx.doi.org/10.1364/OE.22.001413


View Full Text Article

Enhanced HTML    Acrobat PDF (3035 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The changes in excitation dependence of efficiency with temperature are modeled for a wurtzite InGaN light-emitting diode. The model incorporates bandstructure changes with carrier density because of screening of quantum-confined Stark effect. Bandstructure is computed by solving Poisson and k·p equations in the envelope approximation. The information is used in a dynamical model for populations in momentum-resolved electron and hole states. Application of the approach shows the interplay of quantum-well and barrier emissions giving rise to shape changes in efficiency versus current density with changing temperature, as observed in some experiments.

© 2014 Optical Society of America

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optoelectronics

History
Original Manuscript: August 2, 2013
Revised Manuscript: October 22, 2013
Manuscript Accepted: November 21, 2013
Published: January 15, 2014

Citation
Weng W. Chow, "Modeling of temperature and excitation dependences of efficiency in an InGaN light-emitting diode," Opt. Express 22, 1413-1425 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-1413


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol.3, 160–175 (2007). [CrossRef]
  2. D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (2021¯) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting, ” J. Disp. Technol.9, 190–198 (2013). [CrossRef]
  3. G. Y. Liu, J. Zhang, C. K. Tan, and N. Tansu, “Efficiency-droop suppression by using large-bandgap AlGaN thin barrier layers in InGaN quantum-well light-emitting diodes,” IEEE Photonics J.5, 2201011 (2013). [CrossRef]
  4. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett.91, 183507 (2007). [CrossRef]
  5. Y. C. Shen, G. O. Müller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett.91, 141101 (2007). [CrossRef]
  6. A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Larinvovich, Yu. T. Rebane, D. V. Tarkhin, and Yu. G. Shreter, “Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors40, 605–610 (2006). [CrossRef]
  7. S. F. Chichibu, T. Azuhata, M. Sugiyama, T. Kitamura, Y. Ishida, H. Okumurac, H. Nakanishi, T. Sota, and T. Mukai, “Optical and structural studies in InGaN quantum well structure laser diodes,” J. Vac. Sci. Technol. B19, 2177–2183 (2001). [CrossRef]
  8. I. A. Pope, P. M. Smowton, P. Blood, and J. D. Thompson, “Carrier leakage in InGaN quantum well light-emitting diodes emitting at 480nm,” Appl. Phys. Lett.82, 2755–2757 (2003). [CrossRef]
  9. J. Hader, J. V. Moloney, and S. W. Koch, “Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes,” Appl. Phys. Lett.96, 221106 (2010). [CrossRef]
  10. J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the important of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett.92, 261103 (2008). [CrossRef]
  11. K. T. Dellaney, P. Rinke, and C. G. Van de Walle, “Auger recombination rates in nitrides from first principles,” Appl. Phys. Lett.94, 191109 (2009). [CrossRef]
  12. W. W. Chow, M. H. Crawford, J. Y. Tsao, and M. Kneissl, “Internal efficiency of InGaN light-emitting diodes: Beyond a quasiequilibrium model,” Appl. Phys. Lett.97, 121105 (2010). [CrossRef]
  13. W. W. Chow, “Modeling excitation-dependent bandstructure effects on InGaN light-emitting diode efficiency,” Opt. Express19, 21818–218312011. [CrossRef] [PubMed]
  14. A. Bykhovshi, B. Gelmonst, and M. Shur, “The influence of the strain-induced electric field on the charge distribution in GaN-AlN-GaN structure,” J. Appl. Phys.74, 6734–6739 (1993). [CrossRef]
  15. J. S. Im, H. Kollmer, J. Off, A. Sohmer, F. Scholz, and A. Hangleiter, “Reduction of oscillator strength due to piezoelectric fields in GaN/AlGaN quantum wells,” Phys. Rev. B57, R9435–R9438 (1998). [CrossRef]
  16. W. Chow, M. Kira, and S. W. Koch, “Microscopic theory of optical nonlinearities and spontaneous emission in group-III nitride quantum wells,” Phys. Rev. B.60, 1947–1952 (1999). [CrossRef]
  17. H.-Y Ryu, H.-S. Kim, and J.-I. Shim, “Rate equation analysis of efficiency droop in InGaN light-emitting diodes,” Appl. Phys. Lett.95, 081114 (2009). [CrossRef]
  18. J. Hader, J. V. Moloney, and S. W. Koch, “Temperature-dependence of the internal efficiency droop in GaN-based diodes,” Appl. Phys. Lett.99, 181127 (2011). [CrossRef]
  19. E. Jaynes and F. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE51, 89–109 (1963). [CrossRef]
  20. I. Waldmueller, W. W. Chow, M. C. Wanke, and E. W. Young, “Non-equilibrium many-body theory of intersub-band lasers,” IEEE J. Quantum Electron.42, 292–301 (2006). [CrossRef]
  21. S. L. Chuang and C. S. Chang, “k· p method for strained wurtzite semiconductors,” Phys. Rev. B54, 2491–2504 (1996). [CrossRef]
  22. S. J. Jenkins, G. P. Srivastava, and J. C. Inkson, “Simple approach to self-energy corrections in semiconductors and insulators,” Phys. Rev. B48, 4388–4397 (1993). [CrossRef]
  23. A. F. Wright and J. S. Nelson, “Consistent structural properties for AlN, GaN, and InN,” Phys. Rev. B51, 7866–7869 (1995). [CrossRef]
  24. S. H. Wei and A. Zunger, “Valence band splittings and band offsets of AlN, GaN, and InN,” Appl. Phys. Lett.69, 2719–2721 (1996). [CrossRef]
  25. O. Ambacher, “Growth and applications of Group III-nitrides,” J. Phys. D: Appl. Phys.31, 2653–2710 (1998). [CrossRef]
  26. A. Laubsch, M. Sabathil, W. Bergbauer, M. Strassburg, H. Lugauer, M. Peter, S. Lutgen, N. Linder, K. Strebubel, J. Wagner, J. Hader, J. V. Moloney, and S. W. Koch, “On the origin of IQE-’droop’ in InGaN LEDs,” Phys. Status Solidi C6, S913–S916 (2009). [CrossRef]
  27. K. Fujiwara, H. Jimi, and K. Kaneda, “Temperature-dependent droop of electroluminescence efficiency in blue (In,Ga)N quantum-well diodes,” Phys. Status Solidi C6, S814–S817 (2009). [CrossRef]
  28. S. Choi, H. J. Kim, S.-S. Kim, J. Liu, J. Kim, J.-H. Ryou, R. D. Dupuis, A. M. Fishcer, and F. A. Ponce, “Improvement of peak quantum efficiency and efficiency droop in III-nitride visible light-emitting diodes with an InAlN electron-blocking layer,” Appl. Phys. Lett.96, 221105 (2010). [CrossRef]
  29. N. A. Modine, A. M. Armstrong, M. H. Crawford, and W. W. Chow, “Highly nonlinear defect-induced carrier recombination rates in semiconductors,” J. Appl. Phys.114, 144502 (2013). [CrossRef]
  30. W. W. Chow, A. F. Wright, and J. S. Nelson, “Theoretical study of room temperature optical gain in GaN strained quantum wells,” Appl. Phys. Lett.68, 296–298 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited