OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1480–1489

Exposed core microstructured optical fiber Bragg gratings: refractive index sensing

Stephen C. Warren-Smith and Tanya M. Monro  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 1480-1489 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3423 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bragg gratings have been written in exposed-core microstructured optical fibers for the first time using a femtosecond laser. Second and third order gratings have been written and both show strong reflectivity at 1550 nm, with bandwidths as narrow as 60 pm. Due to the penetration of the guided field outside the fiber the Bragg reflections are sensitive to the external refractive index. As different modes have different sensitivities to refractive index but the same temperature sensitivity the sensor can provide temperature-compensated refractive index measurements. Since these Bragg gratings have been formed by physical ablation, these devices can also be used for high temperature sensing, demonstrated here up to 800°C. The fibers have been spliced to single mode fiber for improved handling and integration with commercial interrogation units.

© 2014 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:

Original Manuscript: October 21, 2013
Revised Manuscript: December 18, 2013
Manuscript Accepted: January 2, 2014
Published: January 15, 2014

Stephen C. Warren-Smith and Tanya M. Monro, "Exposed core microstructured optical fiber Bragg gratings: refractive index sensing," Opt. Express 22, 1480-1489 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors 12(7), 8861–8876 (2012). [CrossRef] [PubMed]
  2. X.-D. Fan, I. M. White, S. I. Shopova, H.-Y. Zhu, J. D. Suter, Y.-Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1–2), 8–26 (2008). [CrossRef] [PubMed]
  3. V. Voisin, J. Pilate, P. Damman, P. Mégret, C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014). [CrossRef] [PubMed]
  4. C. Caucheteur, V. Voisin, J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express 21(3), 3055–3066 (2013). [CrossRef] [PubMed]
  5. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003). [CrossRef]
  6. R. H. Selfridge, S. Schultz, J. Kvavle, T. Lowder, R. Gibson, “Multi-use D-fiber sensors,” Proc. SPIE 7982, 79820P (2011). [CrossRef]
  7. T. L. Lowder, J. D. Gordon, S. M. Schultz, R. H. Selfridge, “Volatile organic compound sensing using a surface-relief D-shaped fiber Bragg grating and a polydimethylsiloxane layer,” Opt. Lett. 32(17), 2523–2525 (2007). [CrossRef] [PubMed]
  8. G. Stewart, W. Jin, B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sensors Actuators B Chem. 38(1-3), 42–47 (1997). [CrossRef]
  9. J. Lou, L. Tong, Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13(6), 2135–2140 (2005). [CrossRef] [PubMed]
  10. Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett. 36(16), 3115–3117 (2011). [CrossRef] [PubMed]
  11. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” Photonics Technol. Lett. 16(4), 1149–1151 (2004). [CrossRef]
  12. W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005). [CrossRef]
  13. B. N. Shivananju, M. Renilkumar, G. R. Prashanth, S. Asokan, M. M. Varma, “Detection limit of etched fiber Bragg grating sensors,” J. Lightwave Technol. 31(14), 2441–2447 (2013). [CrossRef]
  14. T. Wieduwilt, S. Bruckner, H. Bartelt, “High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers,” Meas. Sci. Technol. 22(7), 075201 (2011). [CrossRef]
  15. X. Fang, C. R. Liao, D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010). [CrossRef] [PubMed]
  16. P. Zhao, Y. Li, J. Zhang, L. Shi, X. Zhang, “Nanohole induced microfiber Bragg gratings,” Opt. Express 20(27), 28625–28630 (2012). [CrossRef] [PubMed]
  17. Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008). [CrossRef]
  18. H. Ebendorff-Heidepriem, S. C. Warren-Smith, T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009). [CrossRef] [PubMed]
  19. T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008). [CrossRef]
  20. A. S. Webb, F. Poletti, D. J. Richardson, J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007). [CrossRef]
  21. M. Liao, C. Chaudhari, X. Yan, G. Qin, C. Kito, T. Suzuki, Y. Ohishi, “A suspended core nanofiber with unprecedented large diameter ratio of holey region to core,” Opt. Express 18(9), 9088–9097 (2010). [CrossRef] [PubMed]
  22. H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, H. Bartelt, “Microstructured index-guiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008). [CrossRef]
  23. A. Cusano, D. Paladino, A. Iadicicco, “Microstructured fiber Bragg gratings,” J. Lightwave Technol. 27(11), 1663–1697 (2009). [CrossRef]
  24. M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J. L. Auguste, D. Pagnoux, W. Blanc, B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007). [CrossRef] [PubMed]
  25. G. Emiliyanov, P. E. Høiby, L. H. Pedersen, O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors 13(3), 3242–3251 (2013). [CrossRef] [PubMed]
  26. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007). [CrossRef] [PubMed]
  27. J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005). [CrossRef] [PubMed]
  28. Y. Ruan, T. C. Foo, S. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008). [CrossRef] [PubMed]
  29. Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express 15(26), 17819–17826 (2007). [CrossRef] [PubMed]
  30. S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009). [CrossRef] [PubMed]
  31. F. M. Cox, R. Lwin, M. C. J. Large, C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express 15(19), 11843–11848 (2007). [CrossRef] [PubMed]
  32. P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013). [CrossRef]
  33. R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2(11), 1538–1547 (2012). [CrossRef]
  34. W. Henry, “Evanescent field devices: a comparison between tapered optical fibres and polished or D-fibres,” Opt. Quantum Electron. 26(3), S261–S272 (1994). [CrossRef]
  35. G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26(3), S249–S259 (1994). [CrossRef]
  36. F. A. Muhammad, G. Stewart, “D-shaped optical fibre design for methane gas sensing,” Electron. Lett. 28(13), 1205–1206 (1992). [CrossRef]
  37. S. C. Warren-Smith, S. Afshar, T. M. Monro, “Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing,” Opt. Express 16(12), 9034–9045 (2008). [CrossRef] [PubMed]
  38. G. D. Marshall, M. Ams, M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31(18), 2690–2691 (2006). [CrossRef] [PubMed]
  39. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010). [CrossRef] [PubMed]
  40. L. Xiao, W. Jin, M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,” Opt. Lett. 32(2), 115–117 (2007). [CrossRef] [PubMed]
  41. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, C.-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007). [CrossRef]
  42. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  43. S. C. Warren-Smith, “Fluorescence-based chemical sensing using suspended-core microstructured optical fibres,” PhD Thesis, The University of Adelaide (2010).
  44. F. M. Araújo, L. A. Ferreira, J. L. Santos, F. Farahi, “Temperature and strain insensitive bending measurements with D-type fibre Bragg gratings,” Meas. Sci. Technol. 12(7), 829–833 (2001). [CrossRef]
  45. K.-Y. Chu, A. R. Thompson, “Densities and refractive indices of alcohol-water solutions,” J. Chem. Eng. Data 7(3), 358–360 (1962). [CrossRef]
  46. Y. Ran, L. Jin, L.-P. Sun, J. Li, B.-O. Guan, “Bragg gratings in rectangular microfiber for temperature independent refractive index sensing,” Opt. Lett. 37(13), 2649–2651 (2012). [CrossRef] [PubMed]
  47. R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4(1), 29–40 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited