OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1512–1523

Polarized emission of quantum dots in microcavity and anisotropic Purcell factors

Yi-Shan Lee and Sheng-Di Lin  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 1512-1523 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1425 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the polarization properties of quantum dot (QD) emission coupled with the fundamental cavity modes. A rotation of polarization axis and a change of polarization degree are observed as the coupling is varied. To explain this observation, we derive an analytical model considering the polarization misalignment between QD dipole and cavity mode field. Our model also provides a new approach to extract the anisotropic Purcell factors by analyzing the polarization of detected quantum dot emission coupled to the cavity mode, which paves the way to develop high-efficiency polarized single photon sources.

© 2014 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Quantum Optics

Original Manuscript: November 7, 2013
Revised Manuscript: December 30, 2013
Manuscript Accepted: January 10, 2014
Published: January 15, 2014

Yi-Shan Lee and Sheng-Di Lin, "Polarized emission of quantum dots in microcavity and anisotropic Purcell factors," Opt. Express 22, 1512-1523 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Gérard, B. Gayral, “InAs quantum dots-artificial atoms for solid-state cavity-quantum electrodynamics,” Physica E 9(1), 131–139 (2001). [CrossRef]
  2. J. M. Gerard, B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17(11), 2089–2095 (1999). [CrossRef]
  3. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004). [CrossRef] [PubMed]
  4. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004). [CrossRef] [PubMed]
  5. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000). [CrossRef] [PubMed]
  6. A. Kiraz, M. Atature, A. Imamoglu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69(3), 032305 (2004). [CrossRef]
  7. G. S. Solomon, M. Pelton, Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86(17), 3903–3906 (2001). [CrossRef] [PubMed]
  8. M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002). [CrossRef] [PubMed]
  9. C. Santori, D. Fattal, J. Vucković, G. S. Solomon, Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002). [CrossRef] [PubMed]
  10. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002). [CrossRef]
  11. T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012). [CrossRef]
  12. E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001). [CrossRef] [PubMed]
  13. B. Gayral, J. M. Gerard, B. Legrand, E. Costard, V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72(12), 1421–1423 (1998). [CrossRef]
  14. A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88(5), 051113 (2006). [CrossRef]
  15. A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimaraes, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102(4), 043105 (2007). [CrossRef]
  16. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998). [CrossRef]
  17. C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Loffler, T. Kida, S. Hofling, A. Forchel, L. Grenouillet, J. Claudon, J. M. Gerard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008). [CrossRef]
  18. A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008). [CrossRef] [PubMed]
  19. I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, C. Couteau, J. P. Poizat, J. M. Gerard, “Fast exciton spin relaxation in single quantum dots,” Phys. Rev. B 71(23), 233304 (2005). [CrossRef]
  20. I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, J. M. Gerard, “Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble,” Appl. Phys. Lett. 86(4), 041904 (2005). [CrossRef]
  21. D. N. Krizhanovskii, A. Ebbens, A. I. Tartakovskii, F. Pulizzi, T. Wright, M. S. Skolnick, M. Hopkinson, “Individual neutral and charged InxGa1-xAs-GaAs quantum dots with strong in-plane optical anisotropy,” Phys. Rev. B 72(16), 161312 (2005). [CrossRef]
  22. C. H. Lin, W. T. You, H. Y. Chou, S. J. Cheng, S. D. Lin, W. H. Chang, “Anticorrelation between the splitting and polarization of the exciton fine structure in single self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 83(7), 075317 (2011). [CrossRef]
  23. S. Ohno, S. Adachi, R. Kaji, S. Muto, H. Sasakura, “Optical anisotropy and photoluminescence polarization in single InAlAs quantum dots,” Appl. Phys. Lett. 98(16), 161912 (2011). [CrossRef]
  24. C. Tonin, R. Hostein, V. Voliotis, R. Grousson, A. Lemaitre, A. Martinez, “Polarization properties of excitonic qubits in single self-assembled quantum dots,” Phys. Rev. B 85(15), 155303 (2012). [CrossRef]
  25. M. Munsch, A. Mosset, A. Auffeves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, P. Senellart, “Continuous wave versus time-resolved measurements of Purcell factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009). [CrossRef]
  26. T. Tawara, H. Kamada, S. Hughes, H. Okamoto, M. Notomi, T. Sogawa, “Cavity mode emission in weakly coupled quantum dot--cavity systems,” Opt. Express 17(8), 6643–6654 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited