OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1551–1559

Concentration of entangled nitrogen-vacancy centers in decoherence free subspace

Chuan Wang, Tie-Jun Wang, Yong Zhang, Rong-zhen Jiao, and Guang-sheng Jin  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 1551-1559 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1289 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Exploiting the input-output process of low-Q cavities confining nitrogen-vacancy centers, we present an efficient entanglement concentration protocol on electron spin state in decoherence free subspace. Less entangled state can be concentrated to maximally entangled state with the assistance of single photon detection. With its robustness and scalability, the present protocol is immune to dephasing and can be further applied to quantum repeaters and distributed quantum computation.

© 2014 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5568) Quantum optics : Quantum cryptography
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: November 18, 2013
Revised Manuscript: December 22, 2013
Manuscript Accepted: December 26, 2013
Published: January 15, 2014

Chuan Wang, Tie-Jun Wang, Yong Zhang, Rong-zhen Jiao, and Guang-sheng Jin, "Concentration of entangled nitrogen-vacancy centers in decoherence free subspace," Opt. Express 22, 1551-1559 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys.82, 2313–2363 (2010). [CrossRef]
  2. M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science316, 1312–1316(2007). [CrossRef]
  3. L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature477, 574–578(2011). [CrossRef] [PubMed]
  4. D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett.10(8), 3168–3172(2010). [CrossRef] [PubMed]
  5. G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogenC-vacancy centres in diamond,” Nature Physics7, 789–793(2011). [CrossRef]
  6. P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science336, 1283–1286(2012). [CrossRef] [PubMed]
  7. B. J. M. Hausmann, T. M. Babinec, J. T. Choy, J. S. Hodges, S. Hong, I. Bulu, A. Yacoby, M. D. Lukin, and M. Lonc̆ar, “Single-color centers implanted in diamond nanostructures,” New J. Phys.13, 045004(2011). [CrossRef]
  8. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A79, 032303 (2009). [CrossRef]
  9. T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nature Physics2, 408–413(2006). [CrossRef]
  10. W. L. Yang, Z. Y. Xu, M. Feng, and J. F. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys.12, 113039 (2010). [CrossRef]
  11. Q. Chen, W. L. Yang, M. Fang, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A83, 054305 (2011). [CrossRef]
  12. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008). [CrossRef] [PubMed]
  13. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature466, 730–734 (2010). [CrossRef] [PubMed]
  14. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A53, 2046–2052(1996). [CrossRef] [PubMed]
  15. Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett.90, 207901(2003). [CrossRef] [PubMed]
  16. T. Yamamoto, M. Koashi, S. K. Ozdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature421, 343–346(2003). [CrossRef] [PubMed]
  17. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A77, 062325 (2008). [CrossRef]
  18. C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A84, 032307 (2011). [CrossRef]
  19. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Single-photon entanglement concentration for long-distance quantum communication.,” Quantum Inform. Comput.10, 272–281 (2010).
  20. D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-free subspaces for quantum computation,” Phys. Rev. Lett.81, 2594–2597 (1998). [CrossRef]
  21. M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, “Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm,” Phys. Rev. Lett.91, 187903 (2003). [CrossRef] [PubMed]
  22. L. M. Duan and G. C. Guo, “Preserving coherence in quantum computation by pairing quantum bits,” Phys. Rev. Lett.79, 1953–1956 (1997). [CrossRef]
  23. D. Kielpinski, C. Monroe, and D.J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature417, 709–711 (2002). [CrossRef] [PubMed]
  24. D. F. Walls and G. J. Milburn, “Quantum Optics,” (Springer-Verlag, Berlin Heidelberg, 1994).
  25. Q. Chen and M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A82, 052329 (2010). [CrossRef]
  26. A. P. Liu, L. -Y. Cheng, L. Chen, S. -L. Su, H. -F. Wang, and S. Zhang, “Quantum information processing in decoherence-free subspace with nitrogen-vacancy centers coupled to a whispering-gallery mode microresonator,” Opt. Comm.313, 180–185 (2014). [CrossRef]
  27. J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nature Photonics4, 46–49 (2010) [CrossRef]
  28. Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Letters6, 2075–2079(2006). [CrossRef] [PubMed]
  29. H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett.108, 043604 (2012). [CrossRef] [PubMed]
  30. D. K. Armani, T. J. Kippenberg, S. M. Spillance, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421, 925–928 (2003). [CrossRef] [PubMed]
  31. J. Zhu, S. K. Ozdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Optics Express18, 23535–23543 (2010). [CrossRef] [PubMed]
  32. P. E. Barclay, F. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” App. Phys. Lett.95, 191115 (2009). [CrossRef]
  33. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett.109, 033604 (2012). [CrossRef] [PubMed]
  34. A. Jarmola, V. M. Acosta, K. Jensen, S. Chemerisov, and D. Budke, “Temperature- and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond,” Phys. Rev. Lett.108, 197601 (2012). [CrossRef] [PubMed]
  35. P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science320, 1326–1329 (2008). [CrossRef] [PubMed]
  36. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Material8, 383–387 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited