OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1560–1568

Chalcogenide fiber-based distributed temperature sensor with sub-centimeter spatial resolution and enhanced accuracy

Trung D. Vo, Jiakun He, Eric Magi, Matthew J. Collins, Alex S. Clark, Brian G. Ferguson, Chunle Xiong, and Benjamin J. Eggleton  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 1560-1568 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1169 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a sub-centimeter spatial resolution fiber-based distributed temperature sensor with enhanced measurement accuracy and reduced acquisition time. Our approach employs time domain analysis of backscattered Stokes and anti-Stokes photons generated via spontaneous Raman scattering in a chalcogenide (ChG) As2S3 fiber for temperature monitoring. The sensor performance is significantly improved by exploiting the high Raman coefficient and increased refractive index of the ChG fiber. We achieve a temperature uncertainty of ± 0.65 °C for a short measurement time of only 5 seconds; whilst the detection uncertainty is less than ± 0.2 °C for a longer integration time of 2 minutes. We also investigate the optimum Stokes and anti-Stokes bands for optimal sensing performance. Our theoretical analysis shows that a small detuning frequency regime from a pump is more suitable for rapid measurements while a large detuning regime provides higher temperature resolution.

© 2014 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect
(290.5860) Scattering : Scattering, Raman
(280.1350) Remote sensing and sensors : Backscattering
(280.6780) Remote sensing and sensors : Temperature

ToC Category:

Original Manuscript: November 26, 2013
Revised Manuscript: January 2, 2014
Manuscript Accepted: January 3, 2014
Published: January 15, 2014

Trung D. Vo, Jiakun He, Eric Magi, Matthew J. Collins, Alex S. Clark, Brian G. Ferguson, Chunle Xiong, and Benjamin J. Eggleton, "Chalcogenide fiber-based distributed temperature sensor with sub-centimeter spatial resolution and enhanced accuracy," Opt. Express 22, 1560-1568 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. C. Steele-Dunne, M. M. Rutten, D. M. Krzeminska, M. Hausner, S. W. Tyler, J. Selker, T. A. Bogaard, N. C. van de Giesen, “Feasibility of soil moisture estimation using passive distributed temperature sensing,” Water Resour. Res. 46(3), W03534 (2010). [CrossRef]
  2. C. K. Thomas, A. M. Kennedy, J. S. Selker, A. Moretti, M. H. Schroth, A. R. Smoot, N. B. Tufillaro, M. J. Zeeman, “High-resolution fibre-optic temperature sensing: A new tool to study the two-dimensional structure of atmospheric surface-layer flow,” Boundary Layer Meteorol. 142(2), 177–192 (2012). [CrossRef]
  3. S. Nakamura, S. Morooka, K. Kawasaki, “Conductor temperature monitoring system in uderground power transmission XLPE cable joints,” IEEE Trans. Power Delivery 7(4), 1688–1697 (1992). [CrossRef]
  4. T. H. Dubaniewicz, P. G. Kovalchik, L. W. Scott, M. A. Fuller, “Distributed measurement of conductor temperatures in mine training cables using fiber-optic technology,” IEEE Trans. Ind. Appl. 34(2), 395–398 (1998). [CrossRef]
  5. F. Tanimola, D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Nat. Gas Sci. Eng. 1(4–5), 134–143 (2009). [CrossRef]
  6. J. Dornstadter and M. Aufleger, “Distributed temperature sensing in dams,” in Proc. The Prospect for Reservoirs in the 21st Century, London, Sep. 1998.
  7. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997). [CrossRef]
  8. G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010). [CrossRef] [PubMed]
  9. T. Srivastava, R. Das, R. Jha, “Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide,” Plasmonics 8(2), 515–521 (2013). [CrossRef]
  10. H. Lu, B. Sadani, G. Ulliac, C. Guyot, N. Courjal, M. Collet, F. I. Baida, M.-P. Bernal, “Integrated temperature sensor based on an enhanced pyroelectric photonic crystal,” Opt. Express 21(14), 16311–16318 (2013). [CrossRef] [PubMed]
  11. W. Qian, C.-L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011). [CrossRef] [PubMed]
  12. N. van de Giesen, S. C. Steele-Dunne, J. Jansen, O. Hoes, M. B. Hausner, S. Tyler, J. Selker, “Double-ended calibration of fiber-optic Raman spectra distributed temperature sensing date,” Sensors 12(12), 5471–5485 (2012). [CrossRef]
  13. Y.-G. Han, “A long-distance remote sensing technique using a multiwavelength Raman fiber laser based on fiber Bragg gratings embedded in a quartz tube,” IEEE Sens. J. 11(5), 1152–1156 (2011). [CrossRef]
  14. J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985). [CrossRef]
  15. S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept wavelength interferometry,” in Proc. Optical Fiber Sensors, Mexico, 2006.
  16. G. Bolognini, J. Park, M. A. Soto, N. Park, F. Di Pasquale, “Analysis of distributed temperature sensing based in Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007). [CrossRef]
  17. M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, S. W. Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011). [CrossRef]
  18. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  19. S. D. Dyer, M. G. Tanner, B. Baek, R. H. Hadfield, S. W. Nam, “Analysis of a distributed fiber-optic temperature sensor using single-photon detectors,” Opt. Express 20(4), 3456–3466 (2012). [CrossRef] [PubMed]
  20. B. J. Eggleton, B. Luther-Davies, K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  21. C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, B. J. Eggleton, “Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber,” Appl. Opt. 48(29), 5467–5474 (2009). [CrossRef] [PubMed]
  22. M. J. Collins, A. C. Judge, A. S. Clark, S. Shahnia, E. C. Mägi, M. J. Steel, C. Xiong, B. J. Eggleton, “Broadband photon-counting Raman spectroscopy in short optical waveguides,” Appl. Phys. Lett. 101(21), 211110 (2012). [CrossRef]
  23. M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, T. Kaino, “Third order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77(11), 5518–5523 (1995). [CrossRef]
  24. A. Ukil, H. Braendle, P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012). [CrossRef]
  25. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15(16), 10324–10329 (2007). [CrossRef] [PubMed]
  26. Q. Lin, F. Yaman, G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited