OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1569–1575

Polarization versus photon spin

Alfredo Luis and Alfonso Rodil  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 1569-1575 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (671 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examine whether the Stokes parameters of a two-mode electromagnetic field results from the superposition of the spins of the photons it contains. To this end we express any n-photon state as the result of the action on the vacuum of n creation operators generating photons which can have may different polarization states in general. We find that the macroscopic polarization holds as sum of the single-photon Stokes parameters only for the SU(2) orbits of photon-number states. The states that lack this property are entangled in every basis of independent field modes, so this is a class of entanglement beyond the reach of SU(2) transformations.

© 2014 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

Original Manuscript: October 28, 2013
Revised Manuscript: December 15, 2013
Manuscript Accepted: December 15, 2013
Published: January 15, 2014

Alfredo Luis and Alfonso Rodil, "Polarization versus photon spin," Opt. Express 22, 1569-1575 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born, E. Wolf, Principles of Optics, 7 (Cambridge University, 1999). [CrossRef]
  2. Ch. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).
  3. J. Schwinger, Quantum Theory of Angular Momentum (Academic, 1965).
  4. A. Rivas, A. Luis, “Characterization of quantum angular-momentum fluctuations via principal components,” Phys. Rev. A 77, 022105 (2008). [CrossRef]
  5. F. T. Arecchi, E. Courtens, R. Gilmore, H. Thomas, “Atomic coherent states in quantum optics,” Phys. Rev. A 6, 2211–2237 (1972). [CrossRef]
  6. A. Luis, L. L. Sánchez-Soto, “A quantum description of the beam splitter,” Quantum Semiclass. Opt. 7, 153–160 (1995). [CrossRef]
  7. E. Majorana, “Atomi orientati in campo magnetico variabile,” Nuovo Cimento 9, 43–50 (1932). [CrossRef]
  8. O. Giraud, P. Braun, D. Braun, “Classicality of spin states,” Phys. Rev. A 78, 042112 (2008). [CrossRef]
  9. M. J. Holland, K. Burnett, “Interferometric detection of optical phase shifts at the Heisenberg limit,” Phys. Rev. Lett. 71, 1355–1358 (1993). [CrossRef] [PubMed]
  10. C. Brif, A. Mann, “Nonclassical interferometry with intelligent light,” Phys. Rev. A 54, 4505–4518 (1996). [CrossRef] [PubMed]
  11. N. D. Mermin, “Extreme quantum entanglement in a superposition of macroscopically distinct states,” Phys. Rev. Lett. 65, 1838–1840 (1990). [CrossRef] [PubMed]
  12. Ph. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, A. Zeilinger, “De Broglie wavelength of a non-local four-photon state,” Nature 429, 158–161 (2004). [CrossRef] [PubMed]
  13. M. W. Mitchell, J. S. Lundeen, A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161–164 (2004). [CrossRef] [PubMed]
  14. A. R. Usha Devi, Sudha, A. K. Rajagopal, “Majorana representation of symmetric multiqubit states,” Quantum Inf. Process 11, 685–710 (2012). [CrossRef]
  15. T. Bastin, S. Krins, P. Mathonet, M. Godefroid, L. Lamata, E. Solano, “Operational families of entanglement classes for symmetric N-qubit states,” Phys. Rev. Lett. 103, 070503 (2009). [CrossRef] [PubMed]
  16. M. Aulbach, D. Markham, M. Murao, “The maximally entangled symmetric state in terms of the geometric measure,” New J. Phys. 12, 073025 (2010). [CrossRef]
  17. P. Bruno, “Quantum geometric phase in Majorana’s stellar representation: mapping onto a many-body Aharonov-Bohm phase,” Phys. Rev. Lett. 108, 240402 (2012). [CrossRef]
  18. O. Giraud, P. Braun, D. Braun, “Quantifying quantumness and the quest for Queens of Quantum,” New J. Phys. 12, 063005 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited